Featured Research

from universities, journals, and other organizations

Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development

Date:
October 26, 2004
Source:
Emory University Health Sciences Center
Summary:
A repetitive drop in blood oxygen levels in newborn rats, similar to that caused by apnea (brief pauses in breathing) in some human infants, is followed by a long-lasting reduction in the release of the brain neurotransmitter dopamine, according to an Emory University research study.

SAN DIEGO -- A repetitive drop in blood oxygen levels in newborn rats, similar to that caused by apnea (brief pauses in breathing) in some human infants, is followed by a long-lasting reduction in the release of the brain neurotransmitter dopamine, according to an Emory University research study. Because dopamine promotes attention, learning, memory and a variety of higher cognitive functions, the researchers believe repetitive apnea during neonatal development may be one factor leading to the development of attention deficit hyperactivity disorder (ADHD). This research will be reported at the Society for Neuroscience annual meeting in San Diego on October 24 by Glenda Keating, PhD, and Michael Decker, PhD, of the Department of Neurology at Emory University's School of Medicine. The research was funded by the National Heart Lung and Blood Institute and conducted by the Program in Sleep Medicine and the Department of Neurology at Emory University.

Related Articles


Apnea of prematurity occurs in up to 85 percent of all prematurely born human infants, and obstructive sleep apnea occurs in 3 to 27 percent of all children. Data from previous studies suggests that diminished release of brain dopamine may be responsible for behaviors such as impulsiveness and distractibility, reduced self control, and impaired learning, which are hallmark traits associated with ADHD. Previous studies in Dr. Decker's laboratory at Emory have shown that newborn rats who experience repetitive drops in blood oxygen levels go on to develop behavioral traits similar to those seen in humans with ADHD. This is the first time, however, that researchers have linked repetitive reductions in blood oxygen levels during a period of critical brain development to long-lasting deficiencies in release of dopamine specifically within the striatum, which is one of the brain regions important in modulating behavior, learning and memory.

The scientists exposed newborn rats from 7 to 11 days old to either 20-second bursts of a gas containing low oxygen content or to bursts of compressed air. Once the rats matured into juveniles, the scientists studied their locomotive activity and brain dopamine levels. They found that juvenile rats exposed to brief reductions in oxygen during their neonatal period had a 50 percent reduction in release of dopamine and were hyperactive.

Traditionally, ADHD has been attributed to genetic causes, environmental toxins or maternal use of nicotine, alcohol or drugs. Also, researchers generally have believed that the newborn brain is somewhat resistant to subtle disturbances in blood oxygenation. This study demonstrates in rats, however, that while long-term decreases in the release of dopamine can occur following as few as five days of subtle, repetitive reductions in blood oxygen levels during a critical window of brain development, the hyperactivity and impaired learning that also occur are not noticeable until later, when juvenile animals are old enough to display these behaviors.

The Emory scientists found that juvenile rats exposed to repetitive drops in blood oxygen levels as newborns also had a 50 percent increase in the level of dopamine stored in the brain tissue of the striatum compared to control rats and a reduction in the release of dopamine, showing that instead of releasing dopamine, they were abnormally storing it.

"By linking reductions in blood oxygen during critical times of development to changes in dopamine function, we hope to shed light on the mechanisms of ADHD, which have been poorly understood to this point," said Dr. Keating. "Our results show that a relatively common occurrence in newborns could have long-lasting negative effects, and we believe our model has great potential for creating new insights and leading to new interventions and therapies."

"Our research also could help explain why amphetamines, such as Ritalin, and other non-amphetamines, such as Wellbutrin, that increase levels of brain dopamine are an effective treatment for children with ADHD," Dr. Decker said. "So far scientists haven't sorted out which neurotransmitters are responsible for this effect, but if that could be narrowed down to just dopamine, as suggested by our data, it would provide a basis for developing drugs without the potential addictive properties of existing therapies."

The Emory investigators are exploring different ways to measure altered behavioral outcomes in rats to further confirm the similarity of these behaviors to those identified in ADHD. They also are planning studies aimed at preserving the brain dopamine system in individuals at risk for repetitive reductions in blood oxygenation. These studies could include non-invasive, subtle dietary changes in the mother and the newborn.


Story Source:

The above story is based on materials provided by Emory University Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

Emory University Health Sciences Center. "Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development." ScienceDaily. ScienceDaily, 26 October 2004. <www.sciencedaily.com/releases/2004/10/041025124027.htm>.
Emory University Health Sciences Center. (2004, October 26). Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2004/10/041025124027.htm
Emory University Health Sciences Center. "Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development." ScienceDaily. www.sciencedaily.com/releases/2004/10/041025124027.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins