Featured Research

from universities, journals, and other organizations

Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development

Date:
October 26, 2004
Source:
Emory University Health Sciences Center
Summary:
A repetitive drop in blood oxygen levels in newborn rats, similar to that caused by apnea (brief pauses in breathing) in some human infants, is followed by a long-lasting reduction in the release of the brain neurotransmitter dopamine, according to an Emory University research study.

SAN DIEGO -- A repetitive drop in blood oxygen levels in newborn rats, similar to that caused by apnea (brief pauses in breathing) in some human infants, is followed by a long-lasting reduction in the release of the brain neurotransmitter dopamine, according to an Emory University research study. Because dopamine promotes attention, learning, memory and a variety of higher cognitive functions, the researchers believe repetitive apnea during neonatal development may be one factor leading to the development of attention deficit hyperactivity disorder (ADHD). This research will be reported at the Society for Neuroscience annual meeting in San Diego on October 24 by Glenda Keating, PhD, and Michael Decker, PhD, of the Department of Neurology at Emory University's School of Medicine. The research was funded by the National Heart Lung and Blood Institute and conducted by the Program in Sleep Medicine and the Department of Neurology at Emory University.

Apnea of prematurity occurs in up to 85 percent of all prematurely born human infants, and obstructive sleep apnea occurs in 3 to 27 percent of all children. Data from previous studies suggests that diminished release of brain dopamine may be responsible for behaviors such as impulsiveness and distractibility, reduced self control, and impaired learning, which are hallmark traits associated with ADHD. Previous studies in Dr. Decker's laboratory at Emory have shown that newborn rats who experience repetitive drops in blood oxygen levels go on to develop behavioral traits similar to those seen in humans with ADHD. This is the first time, however, that researchers have linked repetitive reductions in blood oxygen levels during a period of critical brain development to long-lasting deficiencies in release of dopamine specifically within the striatum, which is one of the brain regions important in modulating behavior, learning and memory.

The scientists exposed newborn rats from 7 to 11 days old to either 20-second bursts of a gas containing low oxygen content or to bursts of compressed air. Once the rats matured into juveniles, the scientists studied their locomotive activity and brain dopamine levels. They found that juvenile rats exposed to brief reductions in oxygen during their neonatal period had a 50 percent reduction in release of dopamine and were hyperactive.

Traditionally, ADHD has been attributed to genetic causes, environmental toxins or maternal use of nicotine, alcohol or drugs. Also, researchers generally have believed that the newborn brain is somewhat resistant to subtle disturbances in blood oxygenation. This study demonstrates in rats, however, that while long-term decreases in the release of dopamine can occur following as few as five days of subtle, repetitive reductions in blood oxygen levels during a critical window of brain development, the hyperactivity and impaired learning that also occur are not noticeable until later, when juvenile animals are old enough to display these behaviors.

The Emory scientists found that juvenile rats exposed to repetitive drops in blood oxygen levels as newborns also had a 50 percent increase in the level of dopamine stored in the brain tissue of the striatum compared to control rats and a reduction in the release of dopamine, showing that instead of releasing dopamine, they were abnormally storing it.

"By linking reductions in blood oxygen during critical times of development to changes in dopamine function, we hope to shed light on the mechanisms of ADHD, which have been poorly understood to this point," said Dr. Keating. "Our results show that a relatively common occurrence in newborns could have long-lasting negative effects, and we believe our model has great potential for creating new insights and leading to new interventions and therapies."

"Our research also could help explain why amphetamines, such as Ritalin, and other non-amphetamines, such as Wellbutrin, that increase levels of brain dopamine are an effective treatment for children with ADHD," Dr. Decker said. "So far scientists haven't sorted out which neurotransmitters are responsible for this effect, but if that could be narrowed down to just dopamine, as suggested by our data, it would provide a basis for developing drugs without the potential addictive properties of existing therapies."

The Emory investigators are exploring different ways to measure altered behavioral outcomes in rats to further confirm the similarity of these behaviors to those identified in ADHD. They also are planning studies aimed at preserving the brain dopamine system in individuals at risk for repetitive reductions in blood oxygenation. These studies could include non-invasive, subtle dietary changes in the mother and the newborn.


Story Source:

The above story is based on materials provided by Emory University Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

Emory University Health Sciences Center. "Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development." ScienceDaily. ScienceDaily, 26 October 2004. <www.sciencedaily.com/releases/2004/10/041025124027.htm>.
Emory University Health Sciences Center. (2004, October 26). Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2004/10/041025124027.htm
Emory University Health Sciences Center. "Reductions In Blood Oxygen Levels In Newborns Could Contribute To ADHD Development." ScienceDaily. www.sciencedaily.com/releases/2004/10/041025124027.htm (accessed August 30, 2014).

Share This




More Health & Medicine News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins