Featured Research

from universities, journals, and other organizations

Super Slow Light May Help Speed Optical Communications

Date:
October 27, 2004
Source:
National Institute Of Standards And Technology
Summary:
Light is so fast that it takes less than 2 seconds to travel from the Earth to the moon. This blazing fast speed is what makes the Internet and other complex communications systems possible. But sometimes light needs to be slowed down so that signals can be routed in the right direction and order, converted from one form to another or synchronized properly.

Light waves that travel very slowly without distortion could eventually help simplify and reduce the cost of high-speed optical communications.
Credit: Image courtesy of National Institute Of Standards And Technology

Light is so fast that it takes less than 2 seconds to travel from the Earth to the moon. This blazing fast speed is what makes the Internet and other complex communications systems possible. But sometimes light needs to be slowed down so that signals can be routed in the right direction and order, converted from one form to another or synchronized properly.

Related Articles


Now, physicists at the National Institute of Standards and Technology (NIST) have proposed a new way to slow light down to almost one-millionth its usual speed—to the mere speed of a jet aircraft. As described in the Oct. 1 issue of Physical Review Letters,* the method eventually could help simplify and reduce the cost of high-speed optical communications. The paper presents mathematical calculations proving the existence of a new class of "soliton," a solitary light wave that can propagate over long distances without distortion even when moving very slowly through an ultracold gas.

Solitons first were discovered in the 1800s when a naval engineer observed a water wave travel more than a mile within a canal without dissipating. Light wave solitons generated within optical fibers are now the subject of intense research worldwide. Their very short, stable pulse shapes might be used to pack more information into fiber-optic communication systems. But when previously known forms of optical solitons are slowed down, attenuations and distortions (and therefore losses of data) occur quickly, before the light has traveled even 1 millimeter.

NIST physicists showed it is possible to use a very stable pulsed laser to create a soliton that travels slowly through a cryogenic gas of rubidium atoms for more than 5 centimeters without noticeable distortion. The scientists now plan to translate the theory into practical experiments. Currently, 300 kilometers of fiber are required to delay an optical signal for one thousandth of a second, whereas only a few centimeters of fiber might be needed using the new class of soliton.

The research was supported in part by the Office of Naval Research.

###

*Y. Wu and L. Deng, 2004, Ultraslow Optical Solitons in a Cold Four-State Medium, Physical Review Letters, Vol. 93. Issue 14, published online Sept. 28.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Super Slow Light May Help Speed Optical Communications." ScienceDaily. ScienceDaily, 27 October 2004. <www.sciencedaily.com/releases/2004/10/041027102933.htm>.
National Institute Of Standards And Technology. (2004, October 27). Super Slow Light May Help Speed Optical Communications. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2004/10/041027102933.htm
National Institute Of Standards And Technology. "Super Slow Light May Help Speed Optical Communications." ScienceDaily. www.sciencedaily.com/releases/2004/10/041027102933.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins