Featured Research

from universities, journals, and other organizations

MIT Team Guides Airplane Remotely Using Spoken English

Date:
November 8, 2004
Source:
Massachusetts Institute Of Technology
Summary:
Aeronautics researchers at MIT have developed a manned-to-unmanned aircraft guidance system that allows a pilot in one plane to guide another unmanned airplane by speaking commands in English.

A test of the MIT manned-to-unmanned guidance system at Edwards Air Force Base used, from left, a Lockheed T-33 trainer fighter jet and a Boeing F-15 fighter jet. Eventually an unmanned aerial vehicle, right, will be used in place of the trainer jet.
Credit: Photo courtesy of MIT

Aeronautics researchers at MIT have developed a manned-to-unmanned aircraft guidance system that allows a pilot in one plane to guide another unmanned airplane by speaking commands in English.

In a flight test, the pilotless vehicle, called a UAV (unmanned aerial vehicle), responded to sudden changes in plan and avoided unexpected threats en route to its destination, in real time.

"The system allows the pilot to interface with the UAV at a high level--not just 'turn right, turn left' but 'fly to this region and perform this task,'" said Mario Valenti, a flight controls engineer for Boeing who is on leave to pursue a Ph.D. in electrical engineering and computer science at MIT. "The pilot essentially treats the UAV as a wingman," said Valenti, comparing the UAV to a companion pilot in a fighter-plane squadron.

Tom Schouwenaars, a Ph.D. candidate in aeronautics and astronautics, and Valenti are principal researchers on the guidance system, which is part of the capstone demonstration of the Software Enabled Control (SEC) program. Professors Eric Feron and Jonathan How of the Department of Aeronautics and Astronautics (aero/astro) are among the principal investigators on the SEC program.

The SEC program is a five-year, inter-university effort sponsored by the Defense Advanced Research Projects Agency (DARPA) through the Air Force Research Laboratory. As industry partner, Boeing provided the avionics test platform for the MIT guidance system and the planes used to demonstrate it.

The new guidance system is designed for volatile combat situations. For instance, a pilot might be commanded to gather images of an enemy site located in unknown territory. Rather than putting himself in danger, the pilot could assign a nearby UAV to the task. The UAV moves toward the enemy site, avoiding known threats (no-fly zones) and the unexpected (radar emanating from a missile site), all the while communicating its actions to the pilot in the other aircraft, which follows behind at a higher altitude and a safe distance. The technology also could have applications in the coordination of multiple air or space vehicles, such as in air traffic control or the reconfiguration of distributed satellite systems.

The guidance system performed flawlessly in flight tests involving a Boeing F-15 fighter jet and a Lockheed T-33 trainer fighter jet at Edwards Air Force Base in June. A pilot in the manned F-15 issued mission-level commands in everyday English--"fly to Task Area B"--to the T-33, and the T-33 executed them, maintaining a trajectory safe from threats, and at one point adjusting to a last-minute change in the predetermined mission plan. The T-33 was a substitute for the actual UAV in the test. It was manned by a pilot and crewperson who were on board to manage the aircraft in case of failure, but the vehicle was controlled entirely by MIT's software, which ran on laptops placed inside each plane.

"Through the recent experiments, the SEC program has demonstrated advanced behaviors that may now be integrated into the next generation of unmanned vehicles," said John Bay, DARPA's SEC program manager.

A paper published by the American Institute of Aeronautics and Astronautics (AIAA) in August discussed the results of the flight test in more detail. Aero/astro graduate student Yoshiaki Kuwata and James L. Paunicka, associate technical fellow at Boeing Phantom Works, authored the paper along with Feron, How, Schouwenaars and Valenti. Schouwenaars' work on autonomous trajectory-planning algorithms earned him the AIAA's Unmanned Aerial Vehicles Graduate Award, which he will receive at a conference in Reno, Nev., in January.

Teaching English to an airplane

Three elements combine to make MIT's manned-to-unmanned air vehicle guidance system more flexible and more "intelligent" than previous systems. First, the team worked with Teragram Corp., a software company specializing in language technology, to create a natural-language interface through which the two vehicles communicate and coordinate their actions. The interface translates the pilot's human language into the UAV's machine language, and vice versa. "It allows us to task machines at a higher level, improving safety and efficiency," said Feron.

Second, Valenti designed a task scheduler that keeps track of the oft-changing mission data from the manned vehicle and interprets it into tasks the UAV can perform. The task scheduler is integrated with the third element, Schouwenaars' safe-trajectory-planning algorithm. The algorithm is based on mixed-integer linear programming (MILP), an optimization framework originally developed for operations research. Feron and Schouwenaars started applying MILP to the problem of aircraft routing in 2000. Unlike earlier technologies, MILP allows trajectory planning that can guarantee against collisions. Moreover, the trajectories can be computed while the vehicle is flying, requiring no pre-planning.

Using the off-the-shelf optimization software CPLEX, Schouwenaars fine-tuned the MILP-based guidance technique to enable the UAV to choose the fastest safe path to its destination--and then change course in a split second when faced with a new command or a sudden obstacle. The June flight tests marked the first time that a manned air vehicle used a MILP-based guidance system to control a UAV.

Already, said Feron, "the aerospace industry is using our system in its most advanced UAV programs." He and his team are currently working toward implementing their guidance technology in systems with multiple air vehicles. Their work is being done in MIT's Laboratory for Information and Decision Systems.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "MIT Team Guides Airplane Remotely Using Spoken English." ScienceDaily. ScienceDaily, 8 November 2004. <www.sciencedaily.com/releases/2004/11/041108022959.htm>.
Massachusetts Institute Of Technology. (2004, November 8). MIT Team Guides Airplane Remotely Using Spoken English. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2004/11/041108022959.htm
Massachusetts Institute Of Technology. "MIT Team Guides Airplane Remotely Using Spoken English." ScienceDaily. www.sciencedaily.com/releases/2004/11/041108022959.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins