Featured Research

from universities, journals, and other organizations

Research Aims To Restore Amputee Limb Function

Date:
December 27, 2004
Source:
Massachusetts Institute Of Technology
Summary:
An MIT professor and colleagues from Brown University and the Providence Veterans Affairs Medical Center have begun a five-year, multidisciplinary research project to restore arm and leg function to amputees.

An MIT professor and colleagues from Brown University and the Providence Veterans Affairs Medical Center have begun a five-year, multidisciplinary research project to restore arm and leg function to amputees.

The work will receive $7.2 million in funding from the Department of Veterans Affairs (VA). At the end of the project, the scientists hope to have created "biohybrid" limbs that will use regenerated tissue, lengthened bone, titanium prosthetics and implantable sensors that allow an amputee to use nerves and brain signals to move the arm or leg.

The aim is to give amputees better mobility and control of their limbs and reduce the discomfort and infections common with current prosthetics.

The MIT research, led by Assistant Professor Hugh Herr, is aimed at making artificial legs perform like biologicial ones. He and his colleagues will focus on creating active knees and ankles controlled by an amputee's own nervous system and powered by muscle-like devices.

Herr has appointments in the Media Lab's Program in Media Arts and Sciences and the Harvard-MIT Division of Health Sciences and Technology. He is director of the Media Lab's Biomechatronics Group.

Currently, prosthetic knees and ankles can stop movement but cannot fuel it. Herr will build joints that can create the mechanical force needed to walk and climb without falls or fatigue.

To create proper knee rotation and propulsion, Herr will use special fluids that solidify into a paste when passed through a magnetic field, then reliquify when the energy is removed. Force will also be controlled by a tendon-like spring powered by an electric motor. The ankle system will either use a similar spring or an artificial muscle, made of electroactive polymers, which turn electrical energy into mechanical work.

To control these joints, Herr will use the BION (TM), a wireless microchip about the size of a grain of rice, developed by the Alfred Mann Foundation. The chips will be injected into existing leg muscle, where they pick up signals from nerves and send movement instructions to the knee and ankle. Additional sensors, attached to the heel and forefoot of an external prosthesis, will relay information about ground reaction forces to a microprocessor to further guide movement of the artificial joints.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "Research Aims To Restore Amputee Limb Function." ScienceDaily. ScienceDaily, 27 December 2004. <www.sciencedaily.com/releases/2004/12/041219165642.htm>.
Massachusetts Institute Of Technology. (2004, December 27). Research Aims To Restore Amputee Limb Function. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/12/041219165642.htm
Massachusetts Institute Of Technology. "Research Aims To Restore Amputee Limb Function." ScienceDaily. www.sciencedaily.com/releases/2004/12/041219165642.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins