Featured Research

from universities, journals, and other organizations

Magnetic Resonance Imaging Deconstructs Brain's Complex Network

Date:
January 16, 2005
Source:
Northwestern University
Summary:
A team headed by scientists at Northwestern University, using functional magnetic resonance imaging (fMRI), has shown how to visualize the human brain as a massive, interacting, complex network governed by a few underlying dynamic principles.

A team headed by scientists at Northwestern University, using functional magnetic resonance imaging (fMRI), has shown how to visualize the human brain as a massive, interacting, complex network governed by a few underlying dynamic principles.

Related Articles


The research opens fascinating possibilities for future basic and applied studies to investigate the dynamics of brain states, particularly in cases of dysfunction -- such as schizophrenia, Alzheimer's disease and chronic pain -- without requiring external markers.

Dante R. Chialvo, research associate professor of physiology at Northwestern University Feinberg School of Medicine, led the study, which appeared in the Dec. 31 online issue of the journal Physical Review Letters. The research group included scientists from the IBM T.J. Watson Research Center, Yorktown Heights, N.Y., and the University of Islas Baleares, Mallorca, Spain.

Chialvo and colleagues described how fMRIs from healthy individuals showed that tens of thousands of discrete brain regions form a network that has the same qualitative features as other complex networks, such as the Internet (technological), friendships (social) and metabolic (biochemical) networks.

The fMRI technology provided, in each recording session, hundreds of consecutive images of brain activity discretized in thousands of tiny cubes (voxels). The image intensity at each cube usually indicates the amount of brain activity at that site.

The investigators then calculated the degree of correlation between the activities among the tens of thousands of brain regions. Through their computations, the group discovered which brain regions were momentarily "linked" in a "network."

When they further analyzed the structure of these networks, they saw a familiar picture: Brain networks share the features of other complex networks, such as the Internet -- very few "jumps" were necessary for connecting any two nodes.

"This so-called 'small world' property allows for the most efficient connectivity," Chialvo said.

The second common characteristic the researchers found was a strong "in-homogeneity" -- many nodes had few connections and a very few nodes connected with many others. These "super-connected" nodes act as hubs, providing the networks with fast transmission of information.

"Overall, our initial results indicate that the brain networks share these two fundamental properties, implying that the underlying properties can be understood using the theoretical framework already advanced in the study of other, disparate, networks," Chialvo said.

###

The studies were conducted by a multidisciplinary group of researchers at Feinberg, with funding from the National Institutes of Health; at the IMEDEA of University of Islas Baleares, Mallorca, Spain, with funding of the McyT of Spain; and at IBM T.J. Watson Research Center, Yorktown Heights, N.Y.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Magnetic Resonance Imaging Deconstructs Brain's Complex Network." ScienceDaily. ScienceDaily, 16 January 2005. <www.sciencedaily.com/releases/2005/01/050111115916.htm>.
Northwestern University. (2005, January 16). Magnetic Resonance Imaging Deconstructs Brain's Complex Network. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2005/01/050111115916.htm
Northwestern University. "Magnetic Resonance Imaging Deconstructs Brain's Complex Network." ScienceDaily. www.sciencedaily.com/releases/2005/01/050111115916.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com
Common Pain Reliever Might Dull Your Emotions

Common Pain Reliever Might Dull Your Emotions

Newsy (Apr. 16, 2015) Each week, millions of Americans take acetaminophen to dull minor aches and pains. Now researchers say it might blunt life&apos;s highs and lows, too. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins