Featured Research

from universities, journals, and other organizations

First View Of Many Neurons Processing Information In Living Brain

Date:
January 28, 2005
Source:
Harvard Medical School
Summary:
Harvard Medical School researchers have applied a new microscopy technique in a living animal brain that for the first time reveals highly sophisticated time-lapse images of many neurons coordinating to produce complex patterns of activity. The approach will open up new avenues for analyzing neurodegenerative diseases and other aspects of the brain.

Images of neurons in action: A volume of visual cortex was highlighted in the intact rat brain using a new functional imaging technique. This image shows neurons firing while the rat looks at various visual stimuli. An intense, pulsed infrared laser was focused onto the visual cortex stained with a calcium indicator. At a single focal plane, the calcium signals were used to probe the function of each neuron. Each color represents a different stimulus orientation.
Credit: Image courtesy of Harvard Medical School

Boston (January 19, 2005) -- Harvard Medical School researchers have applied a new microscopy technique in a living animal brain that for the first time reveals highly sophisticated time-lapse images of many neurons coordinating to produce complex patterns of activity. The approach will open up new avenues for analyzing neurodegenerative diseases and other aspects of the brain.

Reporting in this week's online issue of Nature, the research team used the technique to obtain the first close-up look at the neural circuits that produce vision in cats and rats.

"Put simply, this technique allows us to see the brain seeing," said R. Clay Reid, HMS professor of neurobiology, a member of the HMS Systems Neuroscience initiative, and principal investigator on the project. "It's an entirely new way of looking at brain function."

The method, the first to track the responses of all the neurons in a visual circuit simultaneously, promises to rapidly advance our understanding of how the brain is wired for complex image processing. Lessons learned by studying the visual system may eventually apply to other brain functions like movement, thinking, and learning, as well as neurodegenerative diseases.

The applications of single-neuron functional imaging will be plentiful, according to Alzheimer's disease researcher Bradley Hyman, HMS professor of neurology at Massachusetts General Hospital. Hyman, who was not involved with this research, says, "We have rodent models of Alzheimer's disease, Huntington's disease, and Parkinson's disease, and this imaging will be a powerful tool to dissect the cellular basis for the cognitive problems we see in these diseases."

To get a higher resolution picture of how visual cortex neurons are organized, Reid, research fellow Kenichi Ohki, and their colleagues used a recently developed technique to fill neurons in cats or rats with a dye that glows brightly when calcium rises, a tipoff that the nerves are firing. They then illuminated the cells with a high-powered laser and used a sophisticated microscope to make time-lapse images of hundreds of neurons blinking on and off while the animals viewed images, black and white bars moving in various directions, on a computer screen.

The research team captured pictures of nerve cells firing in the visual cortex, a well-studied region of the brain that processes neuronal input from the eye into the images we see. Decades of work by Harvard neurobiologists and Nobel laureates David Hubel and Torsten Wiesel revealed how neurons in the visual cortex respond to image fragments: some fire only when they see horizontal lines and some for vertical lines, others react specifically to leftward or rightward movement. But a deeper understanding of how the neurons coordinate to process a complex image has been elusive, partly because techniques to examine neural circuits were limited to tapping into just a few cells among many, or making fuzzy pictures of many cells at once.

In the past few years, research teams around the world have been attempting new methods for visualizing neurons at work. A team from Munich, Germany, led by Arthur Konnerth recently developed the technique for staining many neurons in the living cerebral cortex with calcium-sensitive molecules. The Harvard Medical School team used this information and the knowledge of the visual system to produce their results and, for the first time, to watch large ensembles of neurons in action.

"The ability to visualize what individual neurons in a circuit are doing while that circuit is functioning opens up new roads to understanding the neural basis of visual perception," said David Fitzpatrick, a professor of neurobiology at Duke University who is not an author on the paper but also studies visual cortex function. "By combining markers for different types of neurons with this calcium imaging technique to look at their activity, we will have a powerful approach to 'circuit breaking' in the visual cortex. The same principle will undoubtedly be applied to cortical areas responsible for other sensory modalities, as well as motor functions and higher cognitive processes."

Having a sharper view of the visual cortex revealed a precision of brain cell organization that was unexpected. In the cat, neurons that share a function, like sensitivity to the same direction of movement, are seen to associate more faithfully than previously appreciated. The new pictures show clearly segregated groups of neurons tiling the cortex with narrow borders separating nerve types. "When we are able to see every single neuron, we see not a neuron is out of place," Reid explained.

The result surprised researchers, since the fine mosaic of functional segregation in cats looks more precise than expected according to current models of how the circuit works. While the bodies of nerves that respond together are seen bunched tightly, their dendrites, the long arms that pick up incoming signals, branch out to cover a much larger surrounding area, overlapping into other neurons' territories. And in the rat, the observed microarchitecture was completely different than in the cat. Instead of being segregated, neurons that recognized different stimuli were all mixed together, suggesting that nature has managed to find different solutions to the same computational problem.


Story Source:

The above story is based on materials provided by Harvard Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Harvard Medical School. "First View Of Many Neurons Processing Information In Living Brain." ScienceDaily. ScienceDaily, 28 January 2005. <www.sciencedaily.com/releases/2005/01/050127234507.htm>.
Harvard Medical School. (2005, January 28). First View Of Many Neurons Processing Information In Living Brain. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2005/01/050127234507.htm
Harvard Medical School. "First View Of Many Neurons Processing Information In Living Brain." ScienceDaily. www.sciencedaily.com/releases/2005/01/050127234507.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins