Featured Research

from universities, journals, and other organizations

New Stem Cell Source Could Boost Bone Marrow Success; Uncharted Area Of Umbilical Cord Offers Hope

Date:
February 18, 2005
Source:
University Of Toronto
Summary:
University of Toronto researchers have discovered an ample source of stem cells in an uncharted part of the umbilical cord, providing new hope for bone marrow transplants and tissue repair.

University of Toronto researchers have discovered an ample source of stem cells in an uncharted part of the umbilical cord, providing new hope for bone marrow transplants and tissue repair.

The study, published in the February issue of Stem Cells, outlines how researchers discovered that the jelly-like connective tissue surrounding the blood vessels of the human umbilical cord, the so-called "Wharton's Jelly," is rich in mesenchymal progenitor cells – cells that generate bone, cartilage and other tissues – and can be harvested to generate an abundant supply in a short amount of time. This expandable source of progenitor cells could greatly improve bone marrow transplantation, a painful yet common procedure that currently has a 30 to 40 per cent success rate in treating disease.

Professor John Davies of U of T's Institute of Biomaterials and Biomedical Engineering (IBBME) and the study's lead author, says that the cells around the vessels – human umbilical cord perivascular (HUCPV) cells – were often discarded because previous research has concentrated only on the cord blood, where the frequency of mesenchymal stem cells is only one in 200 million. The frequency in the HUCPV cells is one in 300. "We hypothesized that since the umbilical cord grows so rapidly during fetal development, there must be some source producing these mesenchymal stem cells," says Davies. "We found that the jelly tissue immediately around the vessels had the richest population of these cells. Once we isolate them, it only takes 21 days to generate enough stem cells for up to 1000 therapeutic cell doses."

Bone marrow transplants treat diseases such as cancers and immune deficiency disorders by replacing diseased cells with fresh ones found inside bones. The transplant requires hematopoietic stem cells (blood-forming stem cells) and, ideally mesenchymal stem cells too, both of which are found in the marrow, to work efficiently. Other research indicates that infusing the marrow with added mesenchymal stem cells can increase the transplant success rate.

"Mesenchymal stem cells can leave the marrow during injury and actually home to the tissue which is damaged," says Davies. "This is why these cells are very important to us in an ongoing state of tissue repair throughout life." Davies says that administering extra mesenchymal progenitor cells can also help repair broken bones or build new cartilage.

To harvest the HUCPV cells, Davies and his team split open umbilical cords and pulled out the blood vessels with their surrounding Wharton's Jelly. (All the cords come from consenting full-term patients.) The vessels were sutured closed and suspended in collagenase, an enzyme that breaks down the Wharton's Jelly around the vessels to release the cells inside. The HUCPV cells were then isolated and cultivated in vitro.

Many parents already freeze the cord blood cells containing hematopoietic stem cells, but U of T professor Bill Stanford, also part of the IBBME, and his wife who is also a stem cell researcher were the first to take advantage of the study by freezing the HUCPV cells in their son's umbilical cord. Their son was born in April 2004. "Any parent who banks their cord blood or, in this case, the HUCPV cells, hopes they never have to use them," says Stanford. "We were already banking our son's cord blood cells so why not bank his HUCPV cells? The data in this study just got better and better and we were too impressed by this source of stem cells not to take advantage of this biological insurance."

According to Davies, the next step is to test the HUCPV cells in immunological compromised animals such as mice. "While we still have some way to go until this therapy is ready for clinical trials, I am hopeful HUCPV cells could radically improve the success of bone marrow transplants," he says.

The research was supported through an Ontario Research and Development Challenge Fund grant.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "New Stem Cell Source Could Boost Bone Marrow Success; Uncharted Area Of Umbilical Cord Offers Hope." ScienceDaily. ScienceDaily, 18 February 2005. <www.sciencedaily.com/releases/2005/02/050212192030.htm>.
University Of Toronto. (2005, February 18). New Stem Cell Source Could Boost Bone Marrow Success; Uncharted Area Of Umbilical Cord Offers Hope. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/02/050212192030.htm
University Of Toronto. "New Stem Cell Source Could Boost Bone Marrow Success; Uncharted Area Of Umbilical Cord Offers Hope." ScienceDaily. www.sciencedaily.com/releases/2005/02/050212192030.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins