Featured Research

from universities, journals, and other organizations

Heart Healthy: CardioMEMS Moves Closer To Commercializing Innovative Sensors For Heart Patients

Date:
February 16, 2005
Source:
Georgia Institute Of Technology
Summary:
CardioMEMS, a member of Georgia Tech’s Advanced Technology Development Center (ATDC), is pioneering a new breed of testing devices to monitor heart patients. Combining wireless communications technology with microelectromechanical systems (MEMS) fabrication, CardioMEMS’ products can provide doctors with more information while making testing less invasive for patients.

Deborah McGee of CardioMEMS examines an EndoSensor in the company's clean room facility in the ATDC Biosciences Center located at Georgia Tech's Environmental Science and Technology Building. The sensor is implanted to measure pressure in an aneurism being treated by a stent graft. (Georgia Tech Photo: Gary Meek)

CardioMEMS, a member of Georgia Tech’s Advanced Technology Development Center (ATDC), is pioneering a new breed of testing devices to monitor heart patients. Combining wireless communications technology with microelectromechanical systems (MEMS) fabrication, CardioMEMS’ products can provide doctors with more information while making testing less invasive for patients.

Related Articles


In June, the U.S. Food & Drug Administration (FDA) approved CardioMEMS’ investigational device exemption (IDE), which enabled the company to begin clinical trials in the United States for its EndoSensor™.

The EndoSensor measures blood pressure in people who have an abdominal aortic aneurysm, a weakening in the lower aorta. This condition ranks as the 13th leading cause of death in the United States. If the aneurysm ruptures, a person can bleed to death within minutes.

Doctors can treat the aneurysm with a stent graft, a slender fabric tube placed inside the bulging artery to brace it and relieve pressure by creating a channel for blood flow. Still, the stent can fail, resulting in leakage of blood into the aneurysm, which can cause the aneurysm to burst. For this reason, lifetime monitoring is required.

Safer, easier testing

Up to now, doctors have relied on CT scans for testing, but CT scans have limitations. “One problem is that CT scans only show the size of the aneurysm,” explains David Stern, CardioMEMS’ chief executive. “Yet pressure, which is what our device monitors, is the most important measurement.”

CT scans are also time-consuming and expensive, Stern adds. And for patients who require lifetime monitoring, there’s a safety issue due to repeated exposure to radiation and contrast dyes that are toxic to kidneys.

CardioMEMS’ biocompatible sensor, which is implanted along with the stent, monitors the stent more effectively than CT scans. It’s also cheaper and more convenient. During checkups, patients don’t even need to remove their clothes. The physician merely waves an electronic wand in front of the patient’s chest. Radio-frequency waves activate the EndoSensor, which takes pressure measurements and then relays the information to an external receiver and monitor.

CardioMEMS conducted its first U.S. implants at the Cleveland Clinic in July. By the end of December, approximately 100 patients in four countries (the United States, Canada, Argentina and Brazil) had received sensors. CardioMEMS will submit resulting trial data to the FDA early this year, and Stern hopes to receive permission to start selling the EndoSensor by mid-2005.

“Our trials show the EndoSensor is safe and producing good data,” reports Stern. “Doctors are enthusiastic because the sensor is very easy to use even though it’s complex technology.”

Early warning system

Separately, CardioMEMS has also been advancing its HeartSensor, a wireless device that measures intracardiac pressure in patients with congestive heart failure.

Similar to the EndoSensor, the HeartSensor is inserted through a catheter in a non-surgical procedure. Patients receive monitoring electronics to take home, which are used to conduct daily pressure readings. Then that data is transferred over a phone line to their physician.

“Our HeartSensor enables doctors to monitor patients more closely and adjust medications as they see the disease progressing,” Stern explains. “Because the sensor detects a change in the body before any external symptoms are manifested, it serves as an early warning system and prevents patients from ending up in the hospital.”

CardioMEMS began initial animal studies last fall and has successfully implanted the heart monitor in pigs. This year Stern hopes to begin uman trials both in and outside of the United States.

Other events accelerating CardioMEMS’ commercialization efforts include:

* External manufacturing. Early prototypes were manufactured at Georgia Tech, but CardioMEMS has signed an agreement with an established MEMS foundry to produce the EndoSensor. The company has already demonstrated the sensors can be produced in large quantities at an affordable cost.

* FCC license. The Federal Communications Commission has granted CardioMEMS a license to operate its wireless sensors in its required frequency range.

* Patent protection. The U.S. Patent and Trademark Office has allowed claims on several patents that CardioMEMS filed earlier.

Launched in 2001, CardioMEMS was co-founded by Dr. Jay Yadav, a cardiologist and director at the Cleveland Clinic Foundation, and Mark Allen, a professor in Georgia Tech’s School of Electrical and Computer Engineering and director of the school’s MEMS research group.

Yadav was interested in Allen’s use of MEMS technology for microsensors that could measure pressure in turbine engines. Although Allen had designed the sensors specifically for military drone aircraft, he and Yadav believed that they could adapt the technology to monitor heart and blood pressure in humans.

MEMS technology uses micro-machining fabrication, which was originally developed for the integrated circuit industry to build electrical and mechanical structures at the micron scale (one-millionth of a meter). “MEMS is an attractive platform for medical devices because mechanical, sensory and computational functions can be placed on a single chip,” Sterns explains. “It also has a low cost of manufacturing and is capable of extreme miniaturization.”

Admitted to ATDC in 2001, CardioMEMS has grown to 30 employees. “ATDC has given us access to a range of personnel and facilities that have been instrumental to our success,” Stern says, noting that one-third of the company’s employees are either Georgia Tech graduates or students working part-time.

CardioMEMS has already raised $16.5 million in funding, which includes a $14 million infusion in Nov. 2003 – a coup in light of the difficult investor environment. “We’re in a good cash position right now, but we’ll be looking at raising more money to fund human trials of our HeartSensor,” Stern says.


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "Heart Healthy: CardioMEMS Moves Closer To Commercializing Innovative Sensors For Heart Patients." ScienceDaily. ScienceDaily, 16 February 2005. <www.sciencedaily.com/releases/2005/02/050213130653.htm>.
Georgia Institute Of Technology. (2005, February 16). Heart Healthy: CardioMEMS Moves Closer To Commercializing Innovative Sensors For Heart Patients. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2005/02/050213130653.htm
Georgia Institute Of Technology. "Heart Healthy: CardioMEMS Moves Closer To Commercializing Innovative Sensors For Heart Patients." ScienceDaily. www.sciencedaily.com/releases/2005/02/050213130653.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins