Featured Research

from universities, journals, and other organizations

Increasing Charge Mobility In Single Molecular Organic Crystals

Date:
April 7, 2005
Source:
Brookhaven National Laboratory
Summary:
Flexible displays that can be folded up in your pocket? More accurate biological and chemical sensors? Biocompatible electronics? In research that may help determine the best materials for a wide range of future electronics applications, a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory will report on the intrinsic electronic properties of molecular organic crystals at the March 2005 meeting of the American Physical Society.

Vladimir Butko.
Credit: Photo courtesy of Brookhaven National Laboratory

LOS ANGELES, CA - Flexible displays that can be folded up in your pocket? More accurate biological and chemical sensors? Biocompatible electronics? In research that may help determine the best materials for a wide range of future electronics applications, a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory will report on the intrinsic electronic properties of molecular organic crystals at the March 2005 meeting of the American Physical Society. Brookhaven materials scientist Vladimir Butko will describe the experimental techniques and key findings on Monday, March 21, at 3:42 p.m. in room 152 of the Los Angeles Convention Center.

Related Articles


Organic materials are particularly attractive for potential applications such as flexible displays, or so-called “electronic paper,” because they are inherently flexible. “Imagine a computer screen that you could crumple or fold like a sheet of plastic film,” Butko says. Yet for this and any other electronics application, the materials must also be able to carry an electric current.

“These organic materials, by themselves, have almost no charge carriers — electrons or “holes” [the absence of electrons] — to carry current,” Butko says. “They act as insulators. But if we inject charge carriers, we can sometimes create organic devices such as field-effect transistors [FETs], through which charge will flow.”

To find out which materials have the best potential for carrying current, Butko has been studying single crystals of molecular organic materials such as pentacene and rubrene. Though these crystals themselves may not have direct applications, they provide the simplest form in which to study the materials’ intrinsic electronic properties — unaffected by factors that might play a role in larger samples such as polycrystalline thin films.

The key, says Butko, is to know whether the injected charge carriers will have a high mobility or stay localized. The most stringent test of localization is to cool such a device to very low temperatures: somewhat close to absolute zero, which is approximately -273 degrees Celsius. At these low temperatures the mobility edge can be probed without the complication of thermal activation -- a process that assists charge carrier transport in semiconductors due to large thermal energy at high temperatures. The studies were done using a physical properties measurement system (PPMS) and electrometers at the Los Alamos National Laboratory.

In his talk, Butko will present first evidence for low-temperature, quasi-temperature-independent transport of injected charge in a crystalline organic FET. “These materials, which also have the highest charge mobility at room temperature among organic FETs, can be most useful for electronic applications,” Butko says.

Once scientists identify the best crystals, they will use thin-film methods to test their applicability for electronic devices from e-paper to large-format display screens.

This research was done in collaboration with Arthur Ramirez, David Lang and Xiaoliu Chi from Bell Laboratories, and Jason Lashley from Los Alamos National Laboratory, and was funded in part by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Increasing Charge Mobility In Single Molecular Organic Crystals." ScienceDaily. ScienceDaily, 7 April 2005. <www.sciencedaily.com/releases/2005/03/050326012522.htm>.
Brookhaven National Laboratory. (2005, April 7). Increasing Charge Mobility In Single Molecular Organic Crystals. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2005/03/050326012522.htm
Brookhaven National Laboratory. "Increasing Charge Mobility In Single Molecular Organic Crystals." ScienceDaily. www.sciencedaily.com/releases/2005/03/050326012522.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins