Featured Research

from universities, journals, and other organizations

Post-Tsunami Thailand Yields Lessons For Coastal Construction

Date:
April 3, 2005
Source:
Johns Hopkins University
Summary:
An inspection of Thai villages and ports struck by tsunami waves has uncovered some engineering lessons that might reduce casualties and destruction in future oceanic upheavals, a Johns Hopkins researcher said.

Robert A. Dalrymple, an expert on water waves and coastal engineering, is the Willard and Lillian Hackerman Professor of Civil Engineering at Johns Hopkins.
Credit: Photo by Ray Studios

An inspection of Thai villages and ports struck by tsunami waves has uncovered some engineering lessons that might reduce casualties and destruction in future oceanic upheavals, a Johns Hopkins researcher said.

Related Articles


Robert A. Dalrymple, an internationally recognized expert on water waves and coastal engineering, was part of a nine-member team that recently toured southern Thailand, examining landscape and structural damage in areas that had been battered by waves up to 10 meters (more than 30 feet) high. The research trip to Thailand, along with similar expeditions to Sri Lanka and India, was organized and funded by the American Society of Civil Engineers, in cooperation with the Institution of Civil Engineers.

An earthquake in the Indian Ocean triggered the Dec. 26 tsunami, which killed more than 200,000 people in 11 nations and caused immense property damage. "The force of the fast-moving waves on structures was tremendous," said Dalrymple, who is the Willard and Lillian Hackerman Professor of Civil Engineering at Johns Hopkins. "We wanted to see which buildings and other structures held up against the waves — and which didn't."

The American Society of Civil Engineers is preparing a detailed technical report. But Dalrymple said team and personal observations in post-tsunami Thailand led him to compile a list of general lessons for builders in coastal areas where future tsunamis may occur:

Elevated structures survive better. The waves were powerful enough to smash through a building's ocean- facing wall and break out the opposite side, and high enough to inundate a second-story level. Elevated buildings that allowed the moving water to pass through the lower level with little interference fared better than those with solid first-floor walls. Taller buildings that allowed people to reach heights above the wave's crest helped reduce casualties.

Materials matter. Reinforced concrete structures were more likely to survive the wave forces. In general, masonry (brick) and wooden structures did not fare as well.

Orientation is important. Walls facing the ocean, allowing perpendicular impact from the waves, sustained more damage. Walls oriented in the direction of the flow sustained less.

Strong foundations are necessary. In addition, landscaping or other features can protect the foundations against scouring, which is soil erosion caused by the moving water.

Seawalls can be a very effective way to reduce wave damage. The structures must be continuous, however, with no gaps for pedestrian crossings. Also, such structures should not slope inland, allowing waves to slide up and over the walls like a skier.

Debris in the flow is hazardous. Many tsunami victims were injured or killed by debris pushed along by the powerful waves. Debris can be minimized if vehicles are parked and heavy items stored on the inland side of buildings.

Ports are particularly vulnerable to tsunami waves. Boats and piers in a harbor hit by a tsunami have little protection.

Beaches in Thailand recover rapidly. The ASCE researchers discovered that within weeks of the disaster, natural ocean forces had returned the sandy beaches nearly to their pre-tsunami condition. The beaches have reopened, Dalrymple said, and Thais are encouraging tourists to return.

Dalrymple said several questions raised during the trip require further research. These include why the height of the tsunami varied dramatically along the coast of Thailand and how engineers can construct a mathematical model of wave forces as they pass through coastal structures.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Post-Tsunami Thailand Yields Lessons For Coastal Construction." ScienceDaily. ScienceDaily, 3 April 2005. <www.sciencedaily.com/releases/2005/03/050326101939.htm>.
Johns Hopkins University. (2005, April 3). Post-Tsunami Thailand Yields Lessons For Coastal Construction. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2005/03/050326101939.htm
Johns Hopkins University. "Post-Tsunami Thailand Yields Lessons For Coastal Construction." ScienceDaily. www.sciencedaily.com/releases/2005/03/050326101939.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Japan's Mt. Aso Volcano Spews Rocks

Raw: Japan's Mt. Aso Volcano Spews Rocks

AP (Nov. 28, 2014) — A volcano in southern Japan is spewing volcanic magma rocks. A regional weather observatory says this could be Mt. Aso's first magma eruption in 22 years. (Nov. 28) Video provided by AP
Powered by NewsLook.com
Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins