Featured Research

from universities, journals, and other organizations

Los Angeles 'Big Squeeze' Continues, Straining Earthquake Faults

Date:
May 19, 2005
Source:
American Geophysical Union
Summary:
Northern metropolitan Los Angeles is being squeezed at a rate of five millimeters a year, straining an area between two earthquake faults that serve as geologic bookends north and south of the affected region. Scientists expect that the strain will ultimately be released in earthquakes much like the 1994 Northridge temblor. The study also suggests which faults might be most likely to rupture.

Map of Greater Los Angeles, depicting selected major faults and the region in northern metropolitan Los Angeles being squeezed by movements of Earth's tectonic plates.
Credit: Image courtesy of NASA/Jet Propulsion Laboratory

WASHINGTON -- Northern metropolitan Los Angeles is being squeezed at a rate of five millimeters [0.2 inches] a year, straining an area between two earthquake faults that serve as geologic bookends north and south of the affected region, according to NASA scientists.

Related Articles


The compression of the Los Angeles landscape is being monitored by a network of more than 250 precision global positioning system (GPS) receivers, known as the Southern California Integrated Global Positioning System Network (SCIGN), as well as by measurements from interferometric synthetic aperture radar (InSAR) satellites operated by the European Space Agency (ESA).

Information from these two sources of precision ground deformation measurements is accumulating and enhancing our knowledge of the forces shaping the land surface in the Los Angeles region. These forces include motions of the North American and Pacific tectonic plates and ground movement caused by human activities, such as oil drilling and pumping water into and out of local aquifers.

A team of scientists from NASA's Jet Propulsion Laboratory and University of California at Los Angeles, led by Donald Argus, set out to distinguish between motions induced by human activity and those generated by movements of Earth's tectonic plates. Their results, published in the Journal of Geophysical Research (Solid Earth) in April, indicate human-caused motions are very slow and could not account for the significant ground shift observed in northern Los Angeles.

The new study used space-based navigation to determine the exact position of hundreds of points around the metropolitan area to measure the strain building up across faults. Scientists expect that the strain will ultimately be released in earthquakes much like the 1994 Northridge temblor. The study also suggests which faults might be most likely to rupture. "These findings remove uncertainty about the rate at which strain is building up in northern metropolitan Los Angeles," Argus said. "In addition, by taking into account the effects of humans and observations from the many new global positioning system sites established in the past few years, we can identify the areas where strain is building the fastest."

He cautioned, however, that more studies are needed, since scientists do not yet fully understand the consequences and risks of this stress accumulation. "Nevertheless, these data have important implications for hazard management and retrofitting strategies," he said.

The study finds strain is rapidly accumulating within an area 12 to 25 kilometers [7.5 to 16 miles] south of the San Gabriel Mountains, primarily in the San Gabriel and San Fernando Valleys and nearby hills. The region is located between the Puente Hills fault, which begins south of downtown Los Angeles and extends east, and the Sierra Madre fault, which runs along the base of the San Gabriel Mountains

The new analysis indicates the crust above the Los Angeles segment of the Puente Hills Fault is being squeezed the most. The finding suggests that the Puente Hills Fault and nearby faults in the area, such as the upper Elysian Park Fault, may be more likely to break than those elsewhere in metropolitan Los Angeles. Previous studies have estimated the Puente Hills Fault might generate an earthquake of magnitude 6.6 to 7.5.

The researchers constructed models of the accumulating strain, varying which faults "creep" (move continuously without producing earthquakes), how fast they creep, and the depths at which the faults go from being "locked" in place (and building strain) to creeping. The model that best fit the actual global positioning system observations is one in which a thrust fault (a fault where one block of Earth shifts up or down relative to the other) is locked above six kilometers [four miles] deep and creeps at about nine millimeters [0.4 inches] a year beneath that depth. From that model, they inferred that the deep part of the Los Angeles segment of the Puente Hills Fault is creeping, as is a deep unknown buried fault east of downtown that lies north of the Whittier Fault and south of the Sierra Madre Fault. The model does not allow the researchers to determine which fault segments are locked.

Argus said a significant discrepancy exists between the relatively shallow locking depth of their model and the historical record of the depth of earthquakes that struck the region in 1971 and 1994, which were much deeper. Scientists speculate the discrepancy may be due to the presence of sediments filling parts of the Los Angeles basin. Further studies are planned to examine how these sediments may be affecting fault strain in the region.

The study used InSAR data collected from 1992 to 2000 from ESA's European Remote Sensing satellite to estimate vertical ground motion. Horizontal strain buildup measurements were made from SCIGN observations from 1994 to 2004.

###

The research was funded by NASA.


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Cite This Page:

American Geophysical Union. "Los Angeles 'Big Squeeze' Continues, Straining Earthquake Faults." ScienceDaily. ScienceDaily, 19 May 2005. <www.sciencedaily.com/releases/2005/05/050519141339.htm>.
American Geophysical Union. (2005, May 19). Los Angeles 'Big Squeeze' Continues, Straining Earthquake Faults. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2005/05/050519141339.htm
American Geophysical Union. "Los Angeles 'Big Squeeze' Continues, Straining Earthquake Faults." ScienceDaily. www.sciencedaily.com/releases/2005/05/050519141339.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins