Featured Research

from universities, journals, and other organizations

AAAS Expert Proposes 'Layered Defense' To Protect Against Smuggled Nuclear Materials

Date:
June 23, 2005
Source:
American Association for the Advancement of Science
Summary:
Benn Tannenbaum, a senior program associate with the AAAS Center for Science, Technology and Security Policy, was invited by members of the Subcommittee on Prevention of Nuclear and Biological Attack and the Subcommittee on Emergency Preparedness, Science, and Technology of the Committee on Homeland Security to provide objective information on efforts to detect nuclear weapons and radiological materials.

Existing monitors for detecting smuggled nuclear weapons components at U.S. ports are "an important first step," AAAS expert Benn Tannenbaum told policymakers at a 21 June hearing before U.S. policymakers. But, he added, "More needs to be done to protect the United States from smuggled nuclear weapons" because current portal monitors probably could not detect even a few kilograms of highly enriched uranium, even if only lightly shielded.

Tannenbaum, a senior program associate with the AAAS Center for Science, Technology and Security Policy, was invited by members of the Subcommittee on Prevention of Nuclear and Biological Attack and the Subcommittee on Emergency Preparedness, Science, and Technology of the Committee on Homeland Security to provide objective information on efforts to detect nuclear weapons and radiological material.

His remarks were based on research conducted for AAAS by two independent experts -- Professors Frank von Hippel of Princeton University and Steve Fetter of the University of Maryland. The two experts recently completed a detailed report for the Center, at the request of Rep. Edward J. Markey (D-MA) and Rep. Bennie G. Thompson (D-MS).

In a summary letter to the Congressmen, Norman Neureiter, director of the AAAS Center for Science, Technology and Security Policy, noted that "a several-kilogram cylinder of uranium metal, shielded by a few millimeters of lead and steel and placed in a shipping container, is likely to escape detection by portal monitors using current detectors, algorithms, and operational procedures."

What is the best way to protect the United States and its ports from smuggled nuclear weapons components such as enriched uranium?

In his testimony, Tannenbaum proposed a "layered defense," incorporating currently deployed monitors at U.S. and international ports; plus new detectors and scanners for locating radiological and fissile material while a ship is in transit. At the same time, Tannenbaum noted that "it will always be far easier to monitor a lump of uranium at a known location than it will be to detect uranium smuggling."

He suggested expanding the Comprehensive Threat Reduction program, which currently helps to safeguard much of Russia's highly enriched uranium and plutonium, while converting some of it to fuel for use in nuclear power reactors. Converting nuclear research reactors to use low enriched uranium also would improve national security, Tannenbaum noted.

The current generation of passive radiation detectors can identify isotopes such as cesium-137, cobalt-60, or americium-241 -- all potential components of dirty bombs -- by monitoring the rate at which radioactive decays occur near a sensor, Tannenbaum explained.

Highly enriched uranium "is very difficult to detect" using existing passive radiation detectors, he said. Some ports of entry have both active and passive detectors. But, better detection might be achieved by increasing sampling times, decreasing the distance between the container and the detector, decreasing background radiation with additional shielding and adding collimators to the detectors. In addition, future detectors must have better energy resolution. "This will allow one to distinguish harmless radioactive materials, such as kitty litter, from dirty bombs and nuclear weapons," Tannenbaum testified.

Tannenbaum cited several new technologies that are now under development for locating radiological and fissile materials. At Los Alamos National Lab, for example, researchers are using cosmic rays to find very dense materials, such as plutonium and uranium, in kilogram quantities within cargo containers, according to Tannenbaum. At Lawrence Livermore National Lab, researchers use neutrons to "ping" a container, which provides useful data because fissile materials have a very characteristic gamma ray response. The Ohio-based company Quintell also is developing inexpensive detectors that would be placed in cargo containers during transoceanic shipment, Tannenbaum said. These detectors take advantage of the 10 or more day transit time to locate highly enriched uranium before it enters a U.S. port. The U.S. Department of Homeland Security and the Department of Energy's National Nuclear Security Administration, meanwhile, have begun construction of a facility to test portal monitors.

###

The AAAS Center for Science, Technology and Security Policy was established by the American Association for the Advancement of Science (AAAS) through generous support from the Science, Technology & Security Initiative at the MacArthur Foundation. The goal of the Center is to encourage the integration of science and public policy for enhanced national and international security. With Director Norman Neureiter, Tannenbaum and other staff work to identify experts who can provide clear, objective, unbiased scientific and technical information to guide policymaking decisions.



Story Source:

The above story is based on materials provided by American Association for the Advancement of Science. Note: Materials may be edited for content and length.


Cite This Page:

American Association for the Advancement of Science. "AAAS Expert Proposes 'Layered Defense' To Protect Against Smuggled Nuclear Materials." ScienceDaily. ScienceDaily, 23 June 2005. <www.sciencedaily.com/releases/2005/06/050622135137.htm>.
American Association for the Advancement of Science. (2005, June 23). AAAS Expert Proposes 'Layered Defense' To Protect Against Smuggled Nuclear Materials. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2005/06/050622135137.htm
American Association for the Advancement of Science. "AAAS Expert Proposes 'Layered Defense' To Protect Against Smuggled Nuclear Materials." ScienceDaily. www.sciencedaily.com/releases/2005/06/050622135137.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins