Featured Research

from universities, journals, and other organizations

Mayo Clinic Researchers Use Ultrasound To Describe Subtle Heart Muscle Motions

Date:
July 29, 2005
Source:
Mayo Clinic
Summary:
By using sound waves Mayo Clinic researchers have described subtle changes in the motion of the heart that are measurable by ultrasound and may improve understanding of heart function, and possibly be a noninvasive aid in predicting impending heart damage including heart attacks. The study could also contribute to optimal adjustment of cardiac pacemakers or perhaps better design of artificial hearts.

ROCHESTER, Minn. -- By using sound waves Mayo Clinic researchers have described subtle changes in the motion of the heart that are measurable by ultrasound and may improve understanding of heart function, and possibly be a noninvasive aid in predicting impending heart damage including heart attacks. The study could also contribute to optimal adjustment of cardiac pacemakers or perhaps better design of artificial hearts. The findings, published in the current Journal of Applied Physiology [JApplPhysiol.000191.2005], are based on "snapshots" of the mechanical transitions that occur between the main relaxation and contraction phases of the heartbeat. During these split-second transitions, the heart muscle "shifts gears" or prepares for the upcoming phase.

"This is only a start and much work is needed, but we are optimistic that our research will ultimately lead to development of noninvasive, broadly clinically available methods in diagnostic ultrasonography," says Marek Belohlavek, M.D., Ph.D., Mayo Clinic ultrasound imaging specialist and senior researcher of the study. "These methods could improve our chances in predicting cardiac events, so that preventive measures could be taken. And in patients with an existing heart condition, a detailed analysis of cardiac function could contribute to therapeutic optimization of heart performance." A patent application has been filed based on this research.

Researchers at the Mayo Clinic Translational Ultrasound Research Unit study the mechanical, biochemical and electrical aspects of these transitions which occur between phases of relaxation -- when the heart ventricles fill with a volume of blood -- and contraction -- when the heart ejects most of the blood volume into body circulation. Recently advanced, high-resolution ultrasound tissue Doppler imaging allowed them to experimentally measure these transitional tissue deformations, which last only milliseconds and are unnoticeable to the human eye. The technology allows slow-motion comparisons of these events separately between the inner and outer layers of the cardiac left ventricle. The researchers' published measurements demonstrate how a rapid succession of motions occurring within tissue of the ventricular wall can appear chaotic if not observed closely and with high temporal resolution. The data also show how these transitions "reorganize" the ventricle to best perform its cycles of filling and ejection.

Significance of the Findings

Alterations in the cardiac mechanical transitions detected by ultrasound imaging can be used as early indicators to predict heart problems, without the risk of an invasive procedure. Such an early warning system could allow physicians to intervene with appropriate therapies and thus prevent problems that could lead to heart attack or heart failure. The knowledge may also help researchers to develop new and targeted treatments in some heart diseases or further improve cardiac pacemakers or artificial hearts.

Animal Model of Heart Functioning

Until recently, it was thought to be sufficient to study the function of the heart muscle during the relaxation and ejection phases of the heartbeat. Now, technological improvements in imaging have allowed studies of the heart muscle condition during the transitional phases. These short-lived mechanical transitions are successfully accomplished and prepare the heart for the next beat optimally only if the mechanical, biochemical and electrical events in the cardiac muscle work in concert and delivery of nutrients and oxygen are uninterrupted. Understanding these rapid transitional events not only improves fundamental understanding of heart functioning, but their dependence on various conditions makes these events vulnerable. This vulnerability translates into early changes in the transitional events detected by the state-of-the-art diagnostic imaging methods.

Using pigs as a very close model to human heart function, researchers established benchmarks for measuring normal and abnormal transitions in heart muscle layers. Accurate analyses of motion, deformation (strain), electrical impulses and other parameters characterize the transitional events between the phases of cardiac filling and ejection.

###

Collaborations and Support

Besides Dr. Belohlavek, the research team included Partho Sengupta, M.D., first author, designer of the study and recipient of the Young Investigator Award from the American Society of Echocardiography for this work; Bijoy Khandheria, M.D.; Josef Korinek, M.D.; and Jianwen Wang, M.D. The work presented in this paper was supported by the National Institutes of Health, GE Healthcare and Mayo Clinic.



Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Mayo Clinic Researchers Use Ultrasound To Describe Subtle Heart Muscle Motions." ScienceDaily. ScienceDaily, 29 July 2005. <www.sciencedaily.com/releases/2005/07/050729070659.htm>.
Mayo Clinic. (2005, July 29). Mayo Clinic Researchers Use Ultrasound To Describe Subtle Heart Muscle Motions. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2005/07/050729070659.htm
Mayo Clinic. "Mayo Clinic Researchers Use Ultrasound To Describe Subtle Heart Muscle Motions." ScienceDaily. www.sciencedaily.com/releases/2005/07/050729070659.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins