Featured Research

from universities, journals, and other organizations

'License To Kill' Enables Powerful Immune Attack Cells In Mice

Date:
August 4, 2005
Source:
Washington University School of Medicine
Summary:
Scientists have discovered that a group of important immune system cells has a surprising resemblance to cinematic British superspy James Bond: the cells receive a "license" that allows them to unleash their most potent attacks on enemies.

Scientists have discovered that a group of important immune system cells has a surprising resemblance to cinematic British superspy James Bond: the cells receive a "license" that allows them to unleash their most potent attacks on enemies.

This licensing process apparently helps reduce the chances that the cells will erroneously direct their firepower at the body's own tissues, according to researchers at Washington University School of Medicine in St. Louis. The process is very different from other previously identified ways that help immune cells distinguish invaders from self, and could have important implications for doctors struggling to understand such issues as persistent viral infections and patients' responses to bone marrow transplants. The findings will appear in the August 4 issue of Nature.

The immune cells in question already evoked cinematic connections simply by virtue of one of their names: scientists commonly refer to them as natural killer cells. The cells rapidly attack invaders and are continually generated in the bone marrow, leading to replacement of the entire population approximately once a week.

Scientists led by Wayne M. Yokoyama, M.D., the Sam J. Levin and Audrey Loew Levin Professor of Research in Arthritis, and professor of medicine and of pathology and immunology, discovered through experiments in mice that the arsenals of natural killer cells only become fully armed after a receptor on their surfaces interacts with a molecule on the surfaces of other cells.

The molecular details of the process were so unusual that Yokoyama and his colleagues found themselves struggling to develop terms to describe it to other immunologists.

"So many other terms that might have been appropriate--education, tolerance, instruction, selection--already have specialized meanings in immunology that really aren't appropriate for this unique process we've discovered," says Yokoyama, who is a Howard Hughes Medical Institute Investigator and chief of the Division of Rheumatology at Barnes-Jewish Hospital. "Many of these terms refer to processes with a similar outcome--improved ability to distinguish between self and non-self--but this is a very different way of reaching that goal. So we came up with the term licensing."

Their results include another ironic connection to the world of cinema spies: the molecular details of the process feature a player who is comparable to a double agent. Scientists have known for some time that natural killer cells have inhibitory receptors on their surfaces.

The natural killer cells' ability to attack is inhibited when these receptors encounter a molecule known as major hiscompatibility complex (MHC) class I on the surface of other cells. MHC serves as a kind of molecular I.D. badge, helping the natural killer cells to distinguish the self from an invader.

But Yokoyama's group found that the inhibitory receptors switch roles during licensing. Although the structure of the receptors is exactly the same in immature natural killer cells, they act not as inhibitors but as enablers. In their studies, natural killer cells in mice became much more capable of mounting attacks against invaders after they first encountered the mouse version of MHC.

"The structure of these receptors on human natural killer cells is different from the mouse version, but they have a similar function," says lead author Sungjin Kim, Ph.D., research instructor in rheumatology. "We will be looking for a way to see if the human version also participates in some kind of licensing process."

The group's research was made possible by a unique mouse line created by Ted H. Hansen, Ph.D., professor of pathology and immunology and of genetics. Mice normally have many different versions of the MHC molecule, but Hansen created a line that makes only one. This was essential to the ability of Yokoyama's group to test its hypothesis.

The new findings from Yokoyama's laboratory could explain some puzzling outcomes in the clinic, including why some patients with hepatitis C infections can be cured while others have a chronic infection for the rest of their lives.

"This could be an important advance both conceptually and in terms of clinical practice," Yokoyama says. "It could also help us match bone marrow transplants in a way that increases the immune system's ability to fight off a relapse of the leukemia."

###

Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song Y-J, Yang L, French AR, Sunwoo1 JB, Lemieux S, Hansen TH, and Yokoyama WM. Licensing of natural killer cells by host MHC class I. Nature, August 4, 2005.

Funding from the Howard Hughes Medical Institute, the National Institute of Allergy and Infectious Diseases, the Rheumatic Disease Core Center at Washington University, and the Barnes-Jewish Hospital Foundation supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School of Medicine. "'License To Kill' Enables Powerful Immune Attack Cells In Mice." ScienceDaily. ScienceDaily, 4 August 2005. <www.sciencedaily.com/releases/2005/08/050804053141.htm>.
Washington University School of Medicine. (2005, August 4). 'License To Kill' Enables Powerful Immune Attack Cells In Mice. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2005/08/050804053141.htm
Washington University School of Medicine. "'License To Kill' Enables Powerful Immune Attack Cells In Mice." ScienceDaily. www.sciencedaily.com/releases/2005/08/050804053141.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins