Featured Research

from universities, journals, and other organizations

A Powerful New Tool For Decoding Gene Functions In Mammals And Man

Date:
August 15, 2005
Source:
Yale University
Summary:
A collaborative project between American and Chinese researchers developed a way to study the function of genes in mice and man by using a moveable genetic element from moths, according to a report in the journal Cell. The technique should be particularly useful for identifying genes and drug targets for diseases such as cancers and diabetes.

The image shows transgenic mice that carry the piggyBac transposon that has caused their cells to express red fluorescent protein.
Credit: Image courtesy of Howard Hughes Medical Institute

New Haven, Conn. -- A collaborative projectbetween American and Chinese researchers developed a way to study thefunction of genes in mice and man by using a moveable genetic elementfrom moths, according to a report in the journal Cell.

"We know how many genes are in the mammalian genome, but thatdoes not tell us how they carry out their jobs," said senior authorTian Xu, Professor and Vice Chair of Genetics at Yale University Schoolof Medicine and a Howard Hughes Medical Institute Investigator. "Wehave found a way to systematically inactivate genes in the mouse genomeso we can understand the functions of these genes."

After sequencing the human and mouse genomes, many scientists haveshifted their attention to determining the function of all of thosegenes. The strategy is to mutate each gene, to observe theconsequences, and investigate the molecular mechanisms. In the past twodecades, only a small percentage of the genes shared by mice and humanshave been analyzed in detail.

Genetic elements, called transposons, move from place to placein the DNA and allow material to be inserted or relocated. Bacteriaswap antibiotic-resistance genes with transposons. Scientists havetailored this natural gene shuffling technique to insert genes and tomutate genes in fruit flies and simple organisms to learn the functionof individual genes.

Transposons have proved to be valuable genetic tools for manyorganisms, but not for vertebrates and mammals. General application inmouse genetics was limited as they travel at low frequencies to limitedlocations, and had little capacity to carry DNA fragments.It tookXu'steam six years to develop an efficient tool for genetic manipulationsin vertebrates and mammals.

Xu and his colleagues at Fudan University in Shanghai, China finallychose a transposon called piggyBac that was originally identified inthe cabbage looper moth. They discovered that it was stable andversatile in mouse and human cell lines , providing a new way togenetically manipulate mammalian cells. It also worked in mice evenwhen it carried a couple of extra genes.

Xu's team made it easier to see the genes piggyBac associates with byadding a red fluorescent protein and an enzyme that changes the coatcolor of a white mouse to grey or black. The genes carried by thetransposons have been stably inherited and expressed through fivegenerations.

"The transposon acts as a genetic beacon, so researchers caneasily track its location without having to sequence the entiregenome," said Xu. In their experiments, piggyBac incorporated into manychromosomes in human and mouse cells. PiggyBac can be removed from amouse lineage by breeding with another mouse that has the enzyme toexcise the transposon.

This technique is a powerful new tool for generating transgenic animalsfor vertebrates and mammals, and a potential new vehicle for human genetherapy.Although piggyBac inserts itself randomly into the DNA, it mostoften locates in genes, making it useful for mutating genes and thus,revealing gene functions.

"This work represents another major step forward from Tian'slaboratory. It teaches us how transposons work in mammalian systems,while providing a tool for the systematic study of gene functionthroughout the human and mouse genomes."

In three months, the two graduate students who worked on the projectgenerated mice mutating 75 different genes. Xu, Min Han, an HHMIinvestigator at the University of Colorado, Boulder, and Yuan Zhuang ofDuke University, and their colleagues at Fudan University are in theprocess of scaling up piggyBac for the Mouse Functional Genome Project,which is aiming to mutate the majority of mouse genes at astate-of-the-art research facility in China to systematicallyunderstand the functions of the mammalian genes.

Xu expects the technique to be particularly useful for identifyinggenes and drug targets for diseases such as cancers and diabetes.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "A Powerful New Tool For Decoding Gene Functions In Mammals And Man." ScienceDaily. ScienceDaily, 15 August 2005. <www.sciencedaily.com/releases/2005/08/050814163056.htm>.
Yale University. (2005, August 15). A Powerful New Tool For Decoding Gene Functions In Mammals And Man. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2005/08/050814163056.htm
Yale University. "A Powerful New Tool For Decoding Gene Functions In Mammals And Man." ScienceDaily. www.sciencedaily.com/releases/2005/08/050814163056.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins