Featured Research

from universities, journals, and other organizations

Dangerous Tricksters: Some Bacteria Use Immune Cells To Reproduce

Date:
September 2, 2005
Source:
University of Bonn
Summary:
Macrophages are effective weapons used by our immune system to absorb and digest pathogenic intruders. Some bacteria, however, can subvert this defence mechanism and even multiply within the macrophages. Cell biologists at the University of Bonn have revealed such a strategy in a recently publication in the journal 'Traffic' (Vol. 6, No. 8, August 2005, pp.635-653).

Macrophages are effective weapons used by our immune system to absorband digest pathogenic intruders. Some bacteria, however, can subvertthis defence mechanism and even multiply within the macrophages. Cellbiologists at the University of Bonn have revealed such a strategy in arecently publication in the journal 'Traffic' (Vol. 6, No. 8, August2005, pp.635-653). Their findings reveal that the pathogens escape the'stomach' of the macrophages which might otherwise digest them.

Related Articles


Action stations in the horse's lung! A bacterium has just beeninhaled into a horse's bronchial tubes, and immune cells are quicklyrecruited to the spot to neutralise the intruder. Macrophages, cellswhose job is to devour such intruders, are attracted by substancestypical of bacteria, which surround the microbe like a cloud. As soonas the immune cells have detected the intruder, they cover thebacterium with part of their own cell membrane like a hood, creating amembrane sac in which the intruder is trapped. This 'phagosome' (fromGreek phagein = to eat) cuts itself off into the inside of themacrophage and is now the point on which all the macrophage's offensiveweaponry is concentrated: the phagosome is flooded with oxygen radicalsand acid. Another kind of membrane bags, the lysosomes, merge with thephagosome and confront the microbe with highly reactive digestiveenzymes. A few hours after the first alarm bells have rung there isnothing left of the bacterium, and the potential danger has beeneliminated.

Multiplication inside the killer

This is what normally happens. However, a whole range ofpathogens have become specialised in tricking this very part of thedefence mechanism and survive or even multiply in these macrophageswhich are actually supposed to kill them.

One of these pathogens is Rhodococcus equi. This bacterium cancause a lung disease in young foals which is very similar totuberculosis in humans. Hence, it is not too surprising thatRhodococcus equi is closely related to the tubercle bacillus(Mycobacterium tuberculosis). Since macrophages are the main target ofRhodococcus in the horse's lung, a lot of rhodococci are found thereduring an infection.

In the Bonn Institute of Cell Biology Eugenia Fernandez andMarco Polidori in Professor Albert Haas's team have been examining whyRhodococcus equi is not killed and digested in macrophages, and is evenable to multiply there. In the course of this study the group was ableto demonstrate that the rhodococci are able to put prevent thephagosome development inside the macrophage, preventing acidificationand merging with the lysosomes. As a result the bacteria are notexposed to the large array of lysosomal digestive enzymes and acid.

Killing the killer

'Basically what this means is that the rhodococci manipulatetheir host cell, they make it themselves comfartable in an environmentfree of acid and digestive enzymes and multiply there,' Professor Haascomments. Within a few days after the onset of the infection, themacrophages die of the infection, they disintegrate and release themultiplied pathogens.

The Bonn cell biologists have demonstrated in the past thatthis cell death is 'necrotic'. This means that cell components escape,attract other immune cells and activating them. Ultimately the resultis inflammation and tissue damage. 'It is quite possible thatrhodococci do not really mind this,' Professor Haas says, 'since theycan then grab a passing macrophage and colonise fresh material.'

The next aim of the Bonn researchers is to investigate whichbacterial features are important for preventing the merger ofphagosomes and lysosomes, and how the immune system normallysuccessfully eradicates an infection despite all the tricks thebacteria use.

Rhodococci, incidentally, can also cause diseases resembling TBin AIDS patients which may be fatal. 'This is an additional importantaspect for our work,' Prof. Haas stresses. 'We assume that our researchcan contribute to understanding TB in humans.' Unlike foals, however,the vast majority of humans do not need to be afraid of this pathogen.'In every spadeful of soil from an affected farm there are millionsupon millions of rhodococci, yet it practically never happens thathealthy humans are successfully infected by them.'


Story Source:

The above story is based on materials provided by University of Bonn. Note: Materials may be edited for content and length.


Cite This Page:

University of Bonn. "Dangerous Tricksters: Some Bacteria Use Immune Cells To Reproduce." ScienceDaily. ScienceDaily, 2 September 2005. <www.sciencedaily.com/releases/2005/09/050902072804.htm>.
University of Bonn. (2005, September 2). Dangerous Tricksters: Some Bacteria Use Immune Cells To Reproduce. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2005/09/050902072804.htm
University of Bonn. "Dangerous Tricksters: Some Bacteria Use Immune Cells To Reproduce." ScienceDaily. www.sciencedaily.com/releases/2005/09/050902072804.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins