Featured Research

from universities, journals, and other organizations

New Book Explains Age-Old Mystery Of Geometrical Illusions

Date:
October 3, 2005
Source:
Duke University
Summary:
The insights provided by neurobiologist Dale Purves and his colleagues over the last few years about why the brain doesn’t see the world according to the measurements provided by rulers, protractors or photometers suggest that vision operates in way very different from what most neuroscientists imagine.

Dale Purves studies visual illusions to better understand how the brain processes vision.
Credit: Photo Jim Wallace

Durham, N.C. -- The insights provided by neurobiologist Dale Purves and his colleagues over the last few years about why the brain doesn’t see the world according to the measurements provided by rulers, protractors or photometers suggest that vision operates in way very different from what most neuroscientists imagine.

In a new book " Perceiving Geometry: Geometric Illusions Explained by Natural Scene Statistics" (Springer), Purves and colleague Catherine Howe explore why the brain generates geometric illusions.

Visual perception is a daunting task for the brain, explains Purves, because light streaming into the eye carries only ambiguous information about the environment.

"The basic problem, recognized for several centuries, is that the image on our retinas can’t specify what’s out there in the world," said Purves. "The light received by our retinal receptors tangles up illumination, reflectance, transmittance, size, distance and orientation," said Purves. "This means that there’s no logical way to get back from the retinal image to what’s actually out there in the world."

Nevertheless, many neurobiologists have attempted to explain vision by postulating that the brain's neural wiring can definitively "calculate" the features of a visual scene, despite the visual world’s inevitable ambiguity. Such “rule-based” theories, said Purves, have arisen because neurobiologists have concentrated on understanding how neurons in the brain’s visual region extract and recognize specific features such as edges in a visual scene.

“Because of the enormouspower and success of modern neurophysiology and neuroanatomy, there just didn’t seem to be any reason to think much about this issue,” said Purves. “However, we began worrying about it seven or eight years ago because the physiology and anatomy people had described didn’t explain what we end up seeing. There was no instance, even in the simplest aspects of vision, where the properties of visual neurons in the brain explain the brightness, colors or forms that we actually see.”

Thus, Purves and his colleagues began exploring visual illusions -- the name given to the more obvious discrepancies between the physical world and the way people see it -- to understand the strategy the brain uses in perceiving the world. Basically, they statistically compared perceptions -- such as the apparent length of a line -- with physical measurements of what the line stimulus on the retina was most likely to represent in the real world.

This sort of analysis, made by measuring a large set of geometrical images with a device called a laser range scanner, showed that the brain is not a calculating engine, cranking out stimulus features, but a "statistical engine" wired by evolution and a person's experience to make the best statistical guess about objects in a visual scene, based on how successful those guesses have been in the past.

“So, vision is not about extracting features from a scene; it’s about extracting statistics in the sense of relating the image on your retina to the visually guided behavior that’s worked in the past,” said Purves. "This framework for thinking about vision explains quantitatively -- sometimes in amazing detail -- what we end up seeing."

In 2003, Purves and colleague Beau Lotto published an explanation of their “probabilistic” theory of vision in their book "Why We See What We Do: An Empirical Theory of Vision" (Sinauer Associates, Inc).

These two books and dozens of scientific papers have framed the questions that Purves believes researchers must ask about how vision works. But he emphasizes that those questions have only begun to be addressed in neurobiological terms.

"The problem for colleagues in physiology and anatomy is that our theory runs counter to what they’ve been doing for the last fifty years," said Purves. "And their response has understandably been 'Well, OK, that’s interesting. But how do you relate this concept of vision to physiology and this anatomy?' It’s perfectly valid to say, 'You’ve got a nice idea and it does explain the phenomenology of what we see, but how does that relate to the neurons that we know and love?'

"The answer is, we don’t know," said Purves. "That’s going to be the next many years of vision research. It will mean constructing a framework that explains how neurons and the connections among them operate in service of this complex, evolved statistical process called vision.

"Some bright people will certainly do this in the next ten, twenty or thirty years," said Purves. "I don’t expect to be around to see it, but inevitably that will happen. But it’s going to take people who deeply understand statistics and computer models of neural systems to develop a working theory of how the properties of neurons and anatomical connections are related to the end product of vision."

Purves said he hopes that the latest book that Catherine Howe and he have written, along with the earlier work, will continue the process of enlisting fellow neurobiologists in tackling the immense question of how we perceive the confusingly ambiguous visual world around us.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "New Book Explains Age-Old Mystery Of Geometrical Illusions." ScienceDaily. ScienceDaily, 3 October 2005. <www.sciencedaily.com/releases/2005/10/051001101342.htm>.
Duke University. (2005, October 3). New Book Explains Age-Old Mystery Of Geometrical Illusions. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2005/10/051001101342.htm
Duke University. "New Book Explains Age-Old Mystery Of Geometrical Illusions." ScienceDaily. www.sciencedaily.com/releases/2005/10/051001101342.htm (accessed April 16, 2014).

Share This



More Mind & Brain News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
App Fights Jet Lag With The Power Of Math

App Fights Jet Lag With The Power Of Math

Newsy (Apr. 13, 2014) Researchers at the University of Michigan have designed an app to fight jet lag by adjusting your body's light intake. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins