Featured Research

from universities, journals, and other organizations

How To Braid Nanoropes

Date:
October 15, 2005
Source:
Max-Planck-Gesellschaft
Summary:
Max Planck scientists identify essential control parameters for the assembly of filament bundles.

Three snapshots of a bundle formed by twenty filaments as observed in computer simulations: (a) Loose bundle for a crosslinker concentration that is only slightly above the threshold value; (b) and (c) show two different conformations of the same bundle corresponding to a segregated conformation with three sub-bundles and a compact conformation with roughly cylindrical shape, respectively.
Credit: Image : Max Planck Institute of Colloids and Interfaces

Biological cells aremechanically stable because they contain actin filaments andmicrotubules that form networks and bundles. These filamentarchitectures are determined and controlled by crosslinking proteins,which have two sticky ends that bind to different filaments. In orderto understand the underlying forces and to optimise the mechanicalproperties of these architectures, one must study biomimetic modelsystems that are solely composed of filaments and crosslinkingproteins. One important example is the assembly of several filamentsinto thick bundles or ‘nanoropes’ that are more rigid, and sustain alarger external load, than single filaments.

The assembly offilaments by molecular crosslinkers is disturbed by the thermal motionof the filaments. Scientists at the Max Planck Institute of Colloidsand Interfaces have now shown that this thermal motion preventsfilament assembly unless the crosslinker concentration exceeds acertain threshold value. The latter value depends on the filamentrigidity, on the binding energy of the crosslinkers, and on thetemperature. Furthermore, the threshold value decreases as the number Nof filaments within the bundle is increased, but remains finite in thelimit of large N.

Snapshots of filament bundles as observed incomputer simulations are displayed in Fig. 1. The snapshot in Figure1(a) shows a loose bundle for a crosslinker concentration only slightlyabove the threshold value. The simulations also reveal that thesebundles do not always reach their equilibrium shape, but oftensegregate into sub-bundles containing typically five filaments as shownin Figure 1(b). This bundle morphology differs strongly from the fullyequilibrated bundle shape as shown in Figure 1(c) for the same system.Which of the two morphologies is attained depends on the initialarrangement of the filaments and on the kinetics of the assemblyprocess.

Biomimetic systems, consisting of solutions of actinfilaments and crosslinking proteins, have also been studiedexperimentally by several research groups. The available experimentaldata is consistent with the new theory based on the interplay ofmolecular crosslinkers and thermal motion. In particular, there is someexperimental evidence for the threshold concentration of crosslinkersand the sudden onset of filament bundle formation above thisconcentration, but systematic experimental studies remain to be donethat explore the dependence on the filament number N.

Apart fromrepresenting important structural elements, filament bundles can alsoprovide strong pushing forces. These pushing forces arise from thedirected growth of the filaments by the addition of molecular buildingblocks. One important problem is to understand the dependence of thesepushing forces on the number of filaments within the bundle.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "How To Braid Nanoropes." ScienceDaily. ScienceDaily, 15 October 2005. <www.sciencedaily.com/releases/2005/10/051015092708.htm>.
Max-Planck-Gesellschaft. (2005, October 15). How To Braid Nanoropes. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2005/10/051015092708.htm
Max-Planck-Gesellschaft. "How To Braid Nanoropes." ScienceDaily. www.sciencedaily.com/releases/2005/10/051015092708.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins