Featured Research

from universities, journals, and other organizations

Researchers Learn How Blood Vessel Cells Cope With Their Pressure-packed Job

Date:
October 25, 2005
Source:
University of California - San Diego
Summary:
Rubber bands form stress wrinkles parallel to the direction in which they are being pulled. However, healthy bovine aorta endothelial cells stretched in a special chamber formed stress fibers perpendicular to the direction of stretch.

Top: When aortic endothelial cells were stretched in the up-and-down orientation shown here, they grew "stress fibers" (red) in a "healty" alignment perpendicular to the axis of stretch. Bottom: When researchers inhibited a protein called Rho in aortic endothelial cells, stress fibers grew in an "unhealthy" direction parallel to the axis of stretch.
Credit: Image courtesy of University of California - San Diego

UCSD researchers stretched cells in a workout chamber the size of a credit card to gain a better understanding of how repetitive stretching of endothelial cells that line arteries can make them healthy and resistant to vascular diseases.

Bioengineering researchers at UCSD's Jacobs School of Engineering will report in the Nov. 1 issue of Proceedings of the National Academy of Sciences (PNAS) that arterial endothelial cells subjected to repeated stretching (10 percent of their length, 60 times per minute) produced intracellular arrays of parallel "stress fibers" in a few hours.

The tests were performed on endothelial cells lining the aorta of a cow, but the endothelial cells of the human aorta are expected to react similarly. The stress fibers were made of actin, a fibrous protein that is part of the machinery that gives muscle its ability to contract. Actin also gives virtually all cells their ability to make an internal "cytoskeleton." The stress fibers of endothelial cells in arteries are aligned parallel to the long axis of blood vessels, and this alignment is perpendicular to the direction of rhythmic stretching caused by a beating heart. Such an orientation of stress fibers is a hallmark of healthy blood vessels, but scientists currently understand few of the factors responsible for generating that configuration.

Rubber bands and most other flexible materials react to stretching by forming stress wrinkles parallel to the direction in which they are being pulled. However, the healthy bovine aorta endothelial cells did not behave that way in tests performed in the laboratory of Shu Chien, a coauthor of the PNAS paper and a professor of bioengineering and medicine and director of the Whitaker Institute of Biomedical Engineering at UCSD. When Chien and his collaborators stretched the cells back and forth along one axis in the miniature workout chambers, the cells formed stress fibers perpendicular to the direction of stretch. "This orientation of actin fibers can be thought of as a feedback control in which the external stresses imposed on the cell are felt internally to a much reduced degree," said Chien.


Post-doctoral fellow Roland Kaunas, now an assistant professor of biomedical engineering at Texas A&M University, with the help of UCSD laboratory assistant Phu Nguyen, found that unstretched cells or cells that were stretched only 1 percent of their length contained actin fibers with no directional orientation. However, as they increased the rhythmic stretching from 3 percent of a cell's length to 10 percent, stretch fibers became increasingly oriented perpendicular to the stretching direction.

In the most significant finding in the PNAS article, which was made available online Oct. 24, Chien's group reported that when an intracellular protein called Rho was chemically inhibited, stress fibers grew in the "wrong" direction; they grew parallel rather than perpendicular to the direction of cell stretching. Without Rho, the cells lost their ability to orient stress fibers properly. "Rho is a very important molecule," said Chien. "It works in response to, and in concert with, physical stretching to generate the healthy alignment of stress fibers." Indeed, when Chien's group used a genetic technique to increase the activity of Rho, those cells grew stress fibers in the healthy direction at a lower threshold of stretching.

"Until now, it has not been shown that there is an equivalence and cooperation between mechanical and biochemical stimuli to regulate the proper orientation of these stress fibers," said Kaunas. "Indeed, we found that the stress fibers oriented in such a way to control their level of stress -- not too little and not too much."

Chien and Kaunas collaborated with UCSD research scientist Shunichi Usami, who contributed to the design of the miniature workout chambers. Silicone rubber membranes inside the chambers were coated with a protein that allowed the endothelial cells to adhere to the membranes in a manner similar to how they attach to underlying blood vessel tissue in the body. The researchers isolated endothelial cells from the bovine aorta, grew the cells in culture flasks, and seeded them onto the silicone membranes. After the cells grew into confluent layers, a piston-like "indenter" was programmed to repeatedly push into the underside of the membranes and retract. The 60-cycle-per-minute motion of the indenter simulated the stretching movements of a blood vessel in response to the rising-and-falling blood pressure produced by a beating heart.

The researchers also demonstrated that inhibition of either Rho or a related protein called Rho kinase resulted in loss of the healthy alignment of stress fibers as well as alignment of adhesion sites where those stress fibers would attach to the cell membrane. These new results clearly show that Rho and physical stresses cooperate to produce healthy alignments of stress fibers," said Chien. "We need to understand how cells can sense the mechanical force and achieve this beneficial effect through the activation of Rho, and we also need to identify other proteins that may be involved in this feedback control mechanism."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Researchers Learn How Blood Vessel Cells Cope With Their Pressure-packed Job." ScienceDaily. ScienceDaily, 25 October 2005. <www.sciencedaily.com/releases/2005/10/051025072420.htm>.
University of California - San Diego. (2005, October 25). Researchers Learn How Blood Vessel Cells Cope With Their Pressure-packed Job. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2005/10/051025072420.htm
University of California - San Diego. "Researchers Learn How Blood Vessel Cells Cope With Their Pressure-packed Job." ScienceDaily. www.sciencedaily.com/releases/2005/10/051025072420.htm (accessed September 3, 2014).

Share This



More Health & Medicine News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins