Featured Research

from universities, journals, and other organizations

Quantum Physics Discovery May Bring About Changes In Optical Communications

Date:
October 29, 2005
Source:
University of California - Santa Barbara
Summary:
Results from experiments conducted at the University of California, Santa Barbara may lead to profound changes in optical communications. The discovery is reported in the October 28th edition of the journal Science. "We are working toward sending information 100 times faster than it can be sent now," said UCSB physicist Mark Sherwin.

Results from experiments conducted at the University of California, Santa Barbara may lead to profound changes in optical communications. The discovery is reported in the October 28th edition of the journal Science.

Physicist Mark Sherwin at UCSB explained that as information technology advances, scientists are intent on transmitting information much more quickly. "We are working toward sending information 100 times faster than it can be sent now," he said. His research group has spent five years on this project. The experiments were performed using the university's room-sized, free-electron laser. The research was funded by the National Science Foundation.

"We took an existing semiconductor device that is essentially an electrically controlled shutter and we have tried to open and close the shutter at the rate of three trillion times a second," he explained. "We found that in addition to opening and closing the shutter we are making the shutter itself vibrate."

Those vibrations of the shutter may enable the shutter to be opened and closed with weak light beams rather than strong voltages, said Sherwin. In optical communications there are different channels of communications, so these light beams could correspond to different channels. "It would be a way of changing channels really fast," he added. "Right now it is a very slow process to change channels in optical communications."

Sherwin explained that electronics are much slower than optics and that one optical fiber could transmit information more than 1,000 times as fast as the information could be put on it by an electronic device like a computer.

"What we have here at UCSB is a special source of radiation, the free-electron laser, that can generate electromagnetic oscillations at the rate of a few trillion per second," said Sherwin. "We found that when you drive the modulator, or shutter, that fast it acts in a peculiar way. Rather than absorbing light near a single frequency, it can absorb light near a second frequency as well. This opens the possibility of a new type of cross modulation, where a beam of light at one of the absorption frequencies can turn on or off the light of the other."

Sherwin said that light has been used to send information rapidly over long distances for more than 3000 years. The ancient Greeks, for example, used large fires to flash signals from mountain top to mountain top, as described by Homer in the Iliad. In order to send information, light must be modulated--that is, one must be able to turn the light beam on and off. In World War II, ships communicated with one another in code using searchlights that sailors modulated manually with shutters. Modern modulators for light are controlled by electrical voltages, explained Sherwin.

The Science article, "Quantum Coherence in an Optical Modulator," was co-authored by S. G. Carter, who worked on the experiments at UCSB and then moved to the University of Colorado; V. Birkedal, from UCSB; C. S. Wang, from UCSB; L. A. Coldren, from UCSB; A. V. Maslov, from the Center for Nanotechnology at the NASA Ames Research Center; and, D. S. Citrin from the Georgia Institute of Technology and Georgia Tech Lorraine in Metz, France.

MORE ABOUT THE SCIENCE ARTICLE:

"In an electro-absorption modulator, light near a particular frequency, the carrier frequency, can be blocked or transmitted by tuning a material oscillation in or out of resonance with the carrier frequency," said Sherwin. "A common electro-absorption modulator is made of a semiconductor quantum well, a thin layer of a semiconductor with a relatively small "band gap" (or a relatively large affinity for negatively charged electrons and positively charged holes) sandwiched between two layers with a larger band gap."

Sherwin explained that when light of the correct frequency is incident on a quantum well, it creates bound electron-hole pairs called excitons and is absorbed. An electric field applied perpendicular to the plane of the quantum well shifts the frequency of the excitonic absorption so that light resonant with the zero-field excitonic resonance is no longer absorbed. Quantum well electro-absorption modulators are currently used to modulate light at rates exceeding 10 billion bits per second.

In this article, the scientists report that a quantum well electro-absorption modulator has been strongly driven at frequencies exceeding one Terahertz (1 trillion cycles). This is more than 100 times faster than quantum well modulators are usually operated. At these extremely high frequencies, internal quantum-mechanical oscillations of the excitons themselves were excited. When the strong Terahertz drive was resonant with the excitonic oscillations, the absorption spectrum of weak light near the excitonic absorption of the quantum well was transformed from a single peak to a double peak, or doublet. This doublet is a signature that light with frequency near the excitonic absorption can no longer simply create an exciton in its lowest-energy state, but must create a quantum mechanical superposition of an exciton in its ground and excited states.

A potential application for optical communication is that two arbitrarily weak light beams separated by the frequency of the Terahertz drive could modulate one another. "Usually, such cross-modulation occurs only when light beams have power exceeding a certain threshold," said Sherwin.

On a separate note, Sherwin said, "In atomic gases, the doublet observed here has been the first step toward creating a system that could greatly slow or even stop the propagation of light. The ability to slow or stop light in a semiconductor would also enhance the toolbox for optical communications and computation. However, in order to achieve slowing or stopping of light, the mechanisms for energy dissipation in the quantum well modulator would have to be significantly reduced."


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Barbara. "Quantum Physics Discovery May Bring About Changes In Optical Communications." ScienceDaily. ScienceDaily, 29 October 2005. <www.sciencedaily.com/releases/2005/10/051029100150.htm>.
University of California - Santa Barbara. (2005, October 29). Quantum Physics Discovery May Bring About Changes In Optical Communications. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2005/10/051029100150.htm
University of California - Santa Barbara. "Quantum Physics Discovery May Bring About Changes In Optical Communications." ScienceDaily. www.sciencedaily.com/releases/2005/10/051029100150.htm (accessed August 31, 2014).

Share This




More Matter & Energy News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins