Featured Research

from universities, journals, and other organizations

Stem Cell Microenvironment Reverses Malignant Melanoma

Date:
November 18, 2005
Source:
Northwestern University
Summary:
Northwestern University researchers have demonstrated how the microenvironments of two human embryonic stem cell (hESC) lines (federally approved) induced metastatic melanoma cells to revert to a normal, skin cell-like type with the ability to form colonies similar to hESCs. The researchers also showed that these melanoma cells were less invasive following culture on the microenvironments of hESCs.

Northwestern University researchers have demonstrated how the microenvironments of two human embryonic stem cell (hESC) lines (federally approved) induced metastatic melanoma cells to revert to a normal, skin cell-like type with the ability to form colonies similar to hESCs. The researchers also showed that these melanoma cells were less invasive following culture on the microenvironments of hESCs.

Related Articles


"Our observations highlight the potential utility of isolating the factors within the hESC microenvironment responsible for influencing tumor cell fate and reversing the cancerous properties of metastatic tumor cells, such as melanoma," said Mary J. C. Hendrix, in whose laboratories at Children's Memorial Research Center the experiments were conducted.

An article describing the findings by Hendrix and her laboratory group was published in the Nov. 17 online issue of the journal Stem Cells. Hendrix is president and scientific director of the Children's Memorial Research Center at Northwestern University Feinberg School of Medicine and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center and the Center for Genetic Medicine at Northwestern University. The Northwestern researchers used a unique, three-dimensional model to test whether the microenvironment supporting human embryonic stem cells (hESCs) would influence the behavior of human metastatic melanoma cells -- since hESCs have the ability to develop into a variety of normal cell types -- to assume a more normal melanocyte-like cell, the skin cell type of origin for melanoma.

The model, which was developed in Hendrix's laboratories, consists of a three-dimensional collagen matrix preconditioned by hESCs, followed by their removal and subsequent application, or seeding, of metastatic melanoma cells onto the embryonic microenvironment, which was followed by molecular and functional analyses.

The team applied two different hESC lines, independently, onto three-dimensional collagen matrices and allowed the cells to form colonies and precondition their microenvironments for several days. The hESCs were removed and the matrix microenvironments were left intact. Then, human metastatic melanoma cells were seeded onto the hESC-preconditioned matrix microenvironment and were allowed to remain for several days. After this period, the metastatic melanoma cells exposed to the hECS microenvironment were reprogrammed to express a melanocyte-associated protein, called Melan-A, and form colonies similar to the hESC colonies. The melanoma cells reprogrammed by the hESC microenvironment were also less invasive than the tumor cells that had not been exposed to the embryonic matrices.

"These findings offer a new approach to investigating the possible effects of identifying the microenvironmental factors produced by hESCs on reversing the metastatic properties of tumor cells," Hendrix said.

###

The study was led by Lynne-Marie Postovit, postdoctoral scholar, and Elisabeth A. Seftor, research scientist, in the Hendrix laboratory. Hendrix's co-researcher on the study was Richard E.B. Seftor from Northwestern University.

This research was supported in part by a grant from the National Institutes of Health/National Cancer Institute (CA59702), the Michael Sweig Foundation, and the Medical Research Institute Council.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Stem Cell Microenvironment Reverses Malignant Melanoma." ScienceDaily. ScienceDaily, 18 November 2005. <www.sciencedaily.com/releases/2005/11/051117180731.htm>.
Northwestern University. (2005, November 18). Stem Cell Microenvironment Reverses Malignant Melanoma. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2005/11/051117180731.htm
Northwestern University. "Stem Cell Microenvironment Reverses Malignant Melanoma." ScienceDaily. www.sciencedaily.com/releases/2005/11/051117180731.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins