Featured Research

from universities, journals, and other organizations

Stem Cell Microenvironment Reverses Malignant Melanoma

Date:
November 18, 2005
Source:
Northwestern University
Summary:
Northwestern University researchers have demonstrated how the microenvironments of two human embryonic stem cell (hESC) lines (federally approved) induced metastatic melanoma cells to revert to a normal, skin cell-like type with the ability to form colonies similar to hESCs. The researchers also showed that these melanoma cells were less invasive following culture on the microenvironments of hESCs.

Northwestern University researchers have demonstrated how the microenvironments of two human embryonic stem cell (hESC) lines (federally approved) induced metastatic melanoma cells to revert to a normal, skin cell-like type with the ability to form colonies similar to hESCs. The researchers also showed that these melanoma cells were less invasive following culture on the microenvironments of hESCs.

Related Articles


"Our observations highlight the potential utility of isolating the factors within the hESC microenvironment responsible for influencing tumor cell fate and reversing the cancerous properties of metastatic tumor cells, such as melanoma," said Mary J. C. Hendrix, in whose laboratories at Children's Memorial Research Center the experiments were conducted.

An article describing the findings by Hendrix and her laboratory group was published in the Nov. 17 online issue of the journal Stem Cells. Hendrix is president and scientific director of the Children's Memorial Research Center at Northwestern University Feinberg School of Medicine and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center and the Center for Genetic Medicine at Northwestern University. The Northwestern researchers used a unique, three-dimensional model to test whether the microenvironment supporting human embryonic stem cells (hESCs) would influence the behavior of human metastatic melanoma cells -- since hESCs have the ability to develop into a variety of normal cell types -- to assume a more normal melanocyte-like cell, the skin cell type of origin for melanoma.

The model, which was developed in Hendrix's laboratories, consists of a three-dimensional collagen matrix preconditioned by hESCs, followed by their removal and subsequent application, or seeding, of metastatic melanoma cells onto the embryonic microenvironment, which was followed by molecular and functional analyses.

The team applied two different hESC lines, independently, onto three-dimensional collagen matrices and allowed the cells to form colonies and precondition their microenvironments for several days. The hESCs were removed and the matrix microenvironments were left intact. Then, human metastatic melanoma cells were seeded onto the hESC-preconditioned matrix microenvironment and were allowed to remain for several days. After this period, the metastatic melanoma cells exposed to the hECS microenvironment were reprogrammed to express a melanocyte-associated protein, called Melan-A, and form colonies similar to the hESC colonies. The melanoma cells reprogrammed by the hESC microenvironment were also less invasive than the tumor cells that had not been exposed to the embryonic matrices.

"These findings offer a new approach to investigating the possible effects of identifying the microenvironmental factors produced by hESCs on reversing the metastatic properties of tumor cells," Hendrix said.

###

The study was led by Lynne-Marie Postovit, postdoctoral scholar, and Elisabeth A. Seftor, research scientist, in the Hendrix laboratory. Hendrix's co-researcher on the study was Richard E.B. Seftor from Northwestern University.

This research was supported in part by a grant from the National Institutes of Health/National Cancer Institute (CA59702), the Michael Sweig Foundation, and the Medical Research Institute Council.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Stem Cell Microenvironment Reverses Malignant Melanoma." ScienceDaily. ScienceDaily, 18 November 2005. <www.sciencedaily.com/releases/2005/11/051117180731.htm>.
Northwestern University. (2005, November 18). Stem Cell Microenvironment Reverses Malignant Melanoma. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/11/051117180731.htm
Northwestern University. "Stem Cell Microenvironment Reverses Malignant Melanoma." ScienceDaily. www.sciencedaily.com/releases/2005/11/051117180731.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins