Featured Research

from universities, journals, and other organizations

Precise New Measurement Tests Key Physics Theory Under Extreme Conditions

Date:
December 7, 2005
Source:
Lawrence Livermore National Laboratory
Summary:
A new measurement in quantum electrodynamics -- an extension of quantum mechanics -- is 10 times more precise than any recent measurements. Deviations from QED would have far-reaching consequences in our understanding of the universe, because it would mean that QED is no longer a fundamental theory of nature.

An artist's conception of the interior of an Electron Beam Ion Trap, where new tests of quantum electrodynamics theory were conducted.
Credit: Image courtesy of Lawrence Livermore National Laboratory

A new measurement in quantum electrodynamics -- an extension of quantum mechanics -- is 10 times more precise than any recent measurements.

Quantum electrodynamics, or QED, is one of the most successful theories in physics and considered one of the fundamental theories of nature. QED describes the interaction of matter with photons, in which particles and antiparticles are constantly created and annihilated in electric and magnetic fields – known as a polarized vacuum – and where the electron is surrounded by a sea of photons, an effect that is dubbed the electron’s self energy. QED is the foundation of modern physics and the standard model of particle physics.

Deviations from QED would have far-reaching consequences in our understanding of the universe, because it would mean that QED is no longer a fundamental theory of nature.

Lawrence Livermore National Laboratory scientists have entered a new realm in the search for QED deviations by measuring light they generated in the extreme electric fields surrounding the nucleus of uranium. The group tested the theory using Livermore’s SuperEBIT, an electron beam ion trap, to strip uranium of all but three electrons, forming a uranium plasma.

“Now we are in the regime where we see each manifestation of QED interacting with each other and even with itself,” said Peter Beiersdorfer, lead author of the paper from Livermore’s Physics and Advanced Technologies Directorate. “There is a good analogy from basketball: before you could see one player at a time, say someone shooting a basket. With the precision we have now, we can see the team actually playing. We see how each player interacts.”

The results appear in the December 2 edition of Physical Review Letters.

The researchers studied the radiation emitted by these extreme states of matter in a series of experiments over a two-month period conducted on SuperEBIT.

The Livermore group was able to improve the existing experimental precision by nearly an order of magnitude (10 times better). In doing so, the group beat their competitors at the Heavy Ion Research Institute in Darmstadt, Germany, who recently reported a measurement that has only one-hundredth the accuracy needed to be on par with the Livermore measurements.

“This is a new milestone in QED research,” Beiersdorfer said. “We are still looking to see whether present-day QED is complete and whether we can find any deviations from it. Nevertheless, we put a new, much more stringent constraint on theory.”

Employing high-resolution spectrometers in the experiments, the researchers were the first to take a direct look at the light emitted by the uranium plasma.

The high precision of the SuperEBIT measurements allowed Beiersdorfer’s group to extract an experimental value for the new QED effects, in which the polarized vacuum as well as the self-energy interacted with each other and themselves. Previous measurements only tested the non-interacting manifestations of QED.

“These new results are a major step forward and will stimulate new calculations in QED theory,” said Kwon-Tsang Cheng, from Livermore’s A Division, who together with Mau Chen of Livermore’s V Division and Jonathan Sapirstein from Notre Dame University, have been making calculations for comparison with the SuperEBIT results.

The Livermore team consists of Beiersdorfer, Hui Chen, Daniel Thorn and Elmar Trδbert.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.


Story Source:

The above story is based on materials provided by Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Livermore National Laboratory. "Precise New Measurement Tests Key Physics Theory Under Extreme Conditions." ScienceDaily. ScienceDaily, 7 December 2005. <www.sciencedaily.com/releases/2005/12/051207112610.htm>.
Lawrence Livermore National Laboratory. (2005, December 7). Precise New Measurement Tests Key Physics Theory Under Extreme Conditions. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2005/12/051207112610.htm
Lawrence Livermore National Laboratory. "Precise New Measurement Tests Key Physics Theory Under Extreme Conditions." ScienceDaily. www.sciencedaily.com/releases/2005/12/051207112610.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins