Featured Research

from universities, journals, and other organizations

Clarkson Engineer And 'Spoofing' Expert Looks To Outwit High-Tech Identity Fraud

Date:
December 20, 2005
Source:
Clarkson University
Summary:
Eyeballs, a severed hand or fingers carried in ziplock bags. Back alley eye replacement surgery. These are scenarios used in recent blockbuster movies like Steven Spielberg’s “Minority Report” and “Tomorrow Never Dies” to illustrate how unsavory characters in high-tech worlds beat sophisticated security and identification systems. Sound fantastic? Maybe not. Biometrics is the science of using biological properties, such as fingerprints, an iris scan, or voice recognition, to identify individuals. And in a world of growing terrorism concerns and increasing security measures, the field of biometrics is rapidly expanding.

Clarkson University Associate Professor of Electrical and Computer Engineering Stephanie C. Schuckers, with imitation fingers. Simple casts made from a mold and material such as Play-doh, clay or gelatin can be used to fool most fingerprint recognition devices. Schuckers, an expert in biometrics, the science of using biological properties, such as fingerprints or voice recognition, to identify individuals, is a partner in a $3.1 million interdisciplinary biometrics research project funded by the National Science Foundation with support from the Department of Homeland Security.
Credit: Image courtesy of Clarkson University

Eyeballs, a severed hand or fingers carried in ziplock bags. Back alley eye replacement surgery. These are scenarios used in recent blockbuster movies like Steven Spielberg’s “Minority Report” and “Tomorrow Never Dies” to illustrate how unsavory characters in high-tech worlds beat sophisticated security and identification systems.

Sound fantastic? Maybe not. Biometrics is the science of using biological properties, such as fingerprints, an iris scan, or voice recognition, to identify individuals. And in a world of growing terrorism concerns and increasing security measures, the field of biometrics is rapidly expanding.

“Biometric systems automatically measure the unique physiological or behavioral 'signature’ of an individual, from which a decision can be made to either authenticate or determine that individual’s identity, ” explained Stephanie C. Schuckers, an associate professor of electrical and computer engineering at Clarkson University. “Today, biometric systems are popping up everywhere – in places like hospitals, banks, even college residence halls – to authorize or deny access to medical files, financial accounts, or restricted or private areas.”

“And as with any identification or security system, ” Schuckers adds, “biometric devices are prone to 'spoofing’ or attacks designed to defeat them.”

Spoofing is the process by which individuals overcome a system through an introduction of a fake sample. “Digits from cadavers and fake fingers molded from plastic, or even something as simple as Play-Doh or gelatin, can potentially be misread as authentic, ” she explains. “My research addresses these deficiencies and investigates ways to design effective safeguards and vulnerability countermeasures. The goal is to make the authentication process as accurate and reliable as possible.”

Schuckers’ biometric research is funded by the National Science Foundation (NSF), the Office of Homeland Security and the Department of Defense. She is currently assessing spoofing vulnerability in fingerprint scanners and designing methods to correct for these as part of a $3.1 million interdisciplinary research project funded through the NSF. The project, “ITR: Biometrics: Performance, Security and Societal Impact, ” investigates the technical, legal and privacy issues raised from broader applications of biometric system technology in airport security, computer access, or immigration. It is a joint initiative among researchers from Clarkson, West Virginia University, Michigan State University, St. Lawrence University, and the University of Pittsburgh.

Fingerprint scanning devices often use basic technology, such as an optical camera that take pictures of fingerprints which are then “read” by a computer. In order to assess how vulnerable the scanners are to spoofing, Schuckers and her research team made casts from live fingers using dental materials and used Play-Doh to create molds. They also assembled a collection of cadaver fingers.

In the laboratory, the researchers then systematically tested more than 60 of the faked samples. The results were a 90 percent false verification rate.

“The machines could not distinguish between a live sample and a fake one, ” Schuckers explained. “Since liveness detection is based on the recognition of physiological activities as signs of life, we hypothesized that fingerprint images from live fingers would show a specific changing moisture pattern due to perspiration but cadaver and spoof fingerprint images would not.”

In live fingers, perspiration starts around the pore, and spreads along the ridges, creating a distinct signature of the process. Schuckers and her research team designed a computer algorithm that would detect this pattern when reading a fingerprint image. With the new detection system integrated into the device, less than 10 percent of the spoofed samples were able to fool the machine.

Addressing potential problems before they can occur is one of the goals of Schuckers’ biometrics research. “As security systems based on biometrics continue to develop, it is important that people are reassured that their privacy is protected, ” she said. “How confident will someone feel giving his/her fingerprint over a public communication channel, such as the Internet? The technology needs to be solid and reliable and offer adequate privacy protection before biometric security systems will be accepted by the public.”

Schuckers is also a member of the Center for Identification Technology, a cooperative research center headquartered at West Virginia University that brings together the NSF, industry and government agencies, and university researchers. She is director of the Biomedical Signal Analysis Laboratory at Clarkson. Schuckers joined the faculty of Clarkson in 2002. She received her doctoral degree in electrical engineering from the University of Michigan in 1997.


Story Source:

The above story is based on materials provided by Clarkson University. Note: Materials may be edited for content and length.


Cite This Page:

Clarkson University. "Clarkson Engineer And 'Spoofing' Expert Looks To Outwit High-Tech Identity Fraud." ScienceDaily. ScienceDaily, 20 December 2005. <www.sciencedaily.com/releases/2005/12/051216193022.htm>.
Clarkson University. (2005, December 20). Clarkson Engineer And 'Spoofing' Expert Looks To Outwit High-Tech Identity Fraud. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2005/12/051216193022.htm
Clarkson University. "Clarkson Engineer And 'Spoofing' Expert Looks To Outwit High-Tech Identity Fraud." ScienceDaily. www.sciencedaily.com/releases/2005/12/051216193022.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins