Featured Research

from universities, journals, and other organizations

Infinitesimal Rings For Speedy, Reliable, Efficient Magnetic Memory: Breakthrough Can Lead To Faster Computers

Date:
January 13, 2006
Source:
Johns Hopkins University
Summary:
Imagine a computer that doesn't lose data even in a sudden power outage, or a coin-sized hard drive that could store 100 or more movies. Magnetic random-access memory, or MRAM, could make these possible, and would also offer numerous other advantages. It would, for instance, operate at much faster than the speed of ordinary memory but consume 99 percent less energy.

SEM image of 100 nm symmetric Co nanorings released from substrates that tend to bundle together due to magnetic attraction.
Credit: Image courtesy of Johns Hopkins University

Imagine a computer that doesn't lose data even in a sudden power outage, or a coin-sized hard drive that could store 100 or more movies.

Magnetic random-access memory, or MRAM, could make these possible, and would also offer numerous other advantages. It would, for instance, operate at much faster than the speed of ordinary memory but consume 99 percent less energy.

The current challenge, however, is the design of a fast, reliable and inexpensive way to build stable and densely packed magnetic memory cells.

A team of researchers at The Johns Hopkins University, writing in the Jan. 13 issue of Physical Review Letters, has come up with one possible answer: tiny, irregularly shaped cobalt or nickel rings that can serve as memory cells. These "nanorings" can store a great quantity of information. They also are immune to the problem of "stray" magnetic fields, which are fields that "leak" from other kinds of magnets and can thus interfere with magnets next to them.

"It's the asymmetrical design that's the breakthrough, but we are also very excited about the fast, efficient and inexpensive method we came up with for making them," said paper co-author Frank Q. Zhu, a doctoral candidate in the Henry A. Rowland Department of Physics and Astronomy in the Krieger School of Arts and Sciences at Johns Hopkins.

The nanorings are extremely small, with a diameter of about 100 nanometers. A single nanometer is one billionth of a meter. A single strand of human hair can hold 1 million rings of this size, Zhu says.

The asymmetrical design allows more of the nanorings to end up in a so-called "vortex state," meaning they have no stray field at all. With no stray field to contend with, Zhu's team's nanorings act like quiet neighbors who don't bother each other and, thus, can be packed together extremely densely. As a result, the amount of information that can be stored in a given area is greatly increased.

Fabrication of the nanorings is a multistep procedure involving self-assembly, thin film deposition and dry etching. The key to creating the irregular rings, Zhu said, is to -- while etching the rings with an argon ion beam at the end of the process -- tilt the substrate on which the rings are formed.

"In our previous study, we found that 100 nanometer symmetric nanorings have only about a 40 percent chance to get vortex state," Zhu said. "But the asymmetric nanorings have between a 40 percent and 100 percent chance to get vortex state. This chance can be controlled on-demand by utilizing the direction of magnetic field."

 

###

The research is funded by the National Science Foundation. The Physical Review Letters paper will be available online Jan. 12 here: http://scitation.aip.org/dbt/dbt.jsp?KEY=PRLTAO&Volume=96&Issue=1

 


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Infinitesimal Rings For Speedy, Reliable, Efficient Magnetic Memory: Breakthrough Can Lead To Faster Computers." ScienceDaily. ScienceDaily, 13 January 2006. <www.sciencedaily.com/releases/2006/01/060112035654.htm>.
Johns Hopkins University. (2006, January 13). Infinitesimal Rings For Speedy, Reliable, Efficient Magnetic Memory: Breakthrough Can Lead To Faster Computers. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2006/01/060112035654.htm
Johns Hopkins University. "Infinitesimal Rings For Speedy, Reliable, Efficient Magnetic Memory: Breakthrough Can Lead To Faster Computers." ScienceDaily. www.sciencedaily.com/releases/2006/01/060112035654.htm (accessed April 16, 2014).

Share This



More Computers & Math News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) — Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) — Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
NSA Leaks Net Pulitzer For Guardian, Washington Post

NSA Leaks Net Pulitzer For Guardian, Washington Post

Newsy (Apr. 14, 2014) — The Pulitzer Prize for Public Service was awarded to The Washington Post and The Guardian for their work covering the NSA's surveillance programs. Video provided by Newsy
Powered by NewsLook.com
Google Buys Drone Maker, Hopes to Connect Rural World

Google Buys Drone Maker, Hopes to Connect Rural World

Newsy (Apr. 14, 2014) — Formerly courted by Facebook, Titan Aerospace will become a part of Google's quest to blanket the world in Internet connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins