Featured Research

from universities, journals, and other organizations

Purdue Engineers Solve Chaos Mystery In Use Of High-tech Microscope

Date:
January 20, 2006
Source:
Purdue University
Summary:
Mechanical engineers at Purdue University have proven that the same sort of "deterministic chaos" behind the baffling uncertainties of the stock market and long-term weather conditions also interferes with measurements taken with a commonly used scientific instrument.

Mechanical engineers at Purdue University have proven that the same sort of "deterministic chaos" behind the baffling uncertainties of the stock market and long-term weather conditions also interferes with measurements taken with an atomic-force microscope. The engineers also have shown through a series of experiments precisely how much error is caused by the effects of chaos, information that ultimately could be used to help researchers make more accurate measurements. These three images taken with an atomic-force microscope show the three-dimensional shape, or topology, of a flat sheet of a material called highly oriented pyrolitic graphite. The image on the far left shows how the image should look when the tip is oscillating normally. The two other images are examples of errors created when the tip suddenly starts moving chaotically.
Credit: Photo graph courtesy of Purdue University School of Mechanical Engineering and Birck Nanotechnology Center

Mechanical engineers at Purdue University have proven that the same sort of "deterministic chaos" behind the baffling uncertainties of the stock market and long-term weather conditions also interferes with measurements taken with a commonly used scientific instrument.

"The idea that chaos interferes with measurements in atomic-force microscopy has been sort of an urban myth over the years, but we have now proven this to be a fact," said Arvind Raman, an associate professor of mechanical engineering.

The findings will be detailed in a paper to appear online on Jan. 20 in the journal Physical Review Letters. The paper was written by mechanical engineering doctoral student Shuiqing Hu and Raman.

The engineers also have shown through a series of experiments precisely how much error is caused by the effects of chaos, information that could be used to help researchers make more accurate measurements with atomic-force microscopes.

Atomic-force microscopes are instruments used to take three-dimensional images of tiny structures for research and industry in fields such as nanotechnology, electronics, telecommunications and biotechnology. Researchers use the instruments to determine the features of objects and materials on the scale of nanometers, or billionths of a meter. The method works by passing a tiny cone-shaped tip close to the surface of an object, tracing its features. The tip is attached to a device called a "microcantilever," which resembles a diving board with the tip attached to the free end. The cantilever is caused to oscillate by the vibrating motion of a "piezoelectric crystal" that moves when voltage is applied to it. The force exerted by the crystal can be adjusted to increase and decrease how much the tip oscillates. The greater the vibration, the larger the "amplitude," or how far the tip moves each time it swings toward and away from the surface of the object being measured.

As the cantilever tip oscillates up and down, its motion is influenced by forces, including van der Waals' forces, which exist between atoms. The van der Waals' forces become stronger as the tip gets closer to the surface. Information about the strength of the atomic force reveals how close the tip is to the surface of the object being studied. Researchers use this atomic-force information to position the tip extremely close to the surface. Then, as the tip scans the surface and encounters changes in contour, the entire microcantilever assembly tracks up and down to keep the tip's oscillating amplitude the same. The changing position of the cantilever is carefully monitored to reveal the topology of the surface of the object, yielding an image. This method for using the microscope is commonly referred to by researchers as the "tapping mode."

"For the method to work properly and yield accurate images that show features on the scale of nanometers, the microcantilever tip should always oscillate the same way, nice and smoothly like clockwork," Raman said. "But sometimes the tip suddenly begins oscillating chaotically, producing errors in the measurements."

Until now, researchers did not know why under certain operating conditions nanoscale features appear "noisy" and erroneous.

Hu increased the driving force of the piezoelectric crystal while the microscope was operating in the tapping mode to deliberately produce chaos. The research showed that increasing the amplitude of the microcanteliver by a specific amount resulted abruptly in chaotic oscillations. When Hu increased the amplitude again slightly, the oscillations returned to a normal, smooth motion. Increasing the amplitude further again resulted in chaos.

The experiments were conducted under various conditions, including inside an airtight chamber filled with pure nitrogen, eliminating water vapor, which could taint the results. Hu also analyzed data to detect chaotic behavior by using the same kinds of sophisticated software algorithms commonly used to identify chaotic patterns in the stock market.

"This is the first experimental proof that under some reasonable operating conditions these cantilevers can oscillate chaotically," Raman said. "We are not claiming that our findings answer all of the questions about what causes the chaotic behavior in atomic-force microscopy. There could be additional reasons for the chaotic behavior."

The errors resulting from chaos cause measurements to be off by only a few nanometers.

"We end this paper by saying that maybe this amount of error is negligible by today's standards because the average atomic-force microscope user is not measuring features as small as one or two nanometers," Raman said. "They are making measurements on the scale of about 1,500 nanometers, so if you are off by a couple of nanometers, no big deal.

"But some researchers are pushing the technology and trying to measure very carefully on the scale of two or three nanometers. Certainly, in the future, more and more scientists and engineers will be making measurements at this scale and the errors caused by chaos will no longer be negligible. These findings will be helpful in preventing chaos and reducing the errors."

The findings also identify which types of cantilevers are most prone to chaos, depending on what they are made of and how stiff they are.

"Two major practical results are that we now know what kinds of cantilevers to choose to avoid chaos, and we know the range of amplitudes that result in chaos."

Another important revelation, Raman said, is that the form of chaos observed is in the "deterministic" world of ordinary physics that governs everything from a baseball's trajectory to the motion of planets. Researchers had thought the microscope's sudden aberrant behavior might be caused by exotic forces associated with quantum mechanics, which describes the abstract inner workings of atoms.

Chaos usually is observed in large-scale phenomena, such as long-term weather conditions, the motion of objects in the solar system, sudden changes in the heart's rhythm or the operation of mechanical systems such as washing machines. In such cases, the chaotic behavior is caused by small, seemingly unrelated random events. This randomness has been described as the "butterfly effect," or the idea that small variations in the initial conditions of a system result in large changes in the long-term behavior of the system. Tiny changes in the atmosphere caused by a butterfly flapping its wings could ultimately combine with other random events to produce severe weather a year later thousands of miles away.

"You very rarely see chaos and nanotechnology mentioned together, but it's nice to know that chaos is not just something that happens on the large scale," Raman said.

The research was funded by the National Science Foundation and is associated with Purdue's Birck Nanotechnology Center at Discovery Park, the university's hub for interdisciplinary research.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Purdue Engineers Solve Chaos Mystery In Use Of High-tech Microscope." ScienceDaily. ScienceDaily, 20 January 2006. <www.sciencedaily.com/releases/2006/01/060119231340.htm>.
Purdue University. (2006, January 20). Purdue Engineers Solve Chaos Mystery In Use Of High-tech Microscope. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2006/01/060119231340.htm
Purdue University. "Purdue Engineers Solve Chaos Mystery In Use Of High-tech Microscope." ScienceDaily. www.sciencedaily.com/releases/2006/01/060119231340.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins