Featured Research

from universities, journals, and other organizations

Genetics Plays Role In Relapse Of Illicit Drug-seeking Behavior

Date:
January 23, 2006
Source:
Medical College of Georgia
Summary:
Inbred strains of rats differ in how aggressively they seek cocaine after a few weeks of use, researchers say. The finding is another piece of evidence that genetics plays a role in the relapse of drug-seeking behavior in humans, says Dr. Paul J. Kruzich, behavioral neuroscientist at the Medical College of Georgia and lead study author.

Dr. Paul J. Kruzich, behavioral neuroscientist, is lead study author on a study that provides another piece of evidence that genetics plays a role in the relapse of drug-seeking behavior in humans.
Credit: Photo by Phil Jones

Inbred strains of rats differ in how aggressively they seek cocaine after a few weeks of use, researchers say.

The finding, posted online Jan. 18 by Psychopharmacology, is another piece of evidence that genetics plays a role in the relapse of drug-seeking behavior in humans, says Dr. Paul J. Kruzich, behavioral neuroscientist at the Medical College of Georgia and lead study author.

It also fingers glutamate, a neurotransmitter involved in learning and memory, as an accomplice in stirring the cravings and uncontrollable urges that drive some drug users to use again, he says.

“Given the right environmental stimuli, all persons addicted to psychostimulants can relapse, but potentially some people are a little more susceptible than others … it’s all about gene-environment interaction,” says Dr. Kruzich.

He took two strains of inbred rats – Fischer 344 and Lewis – with known genetic differences, enabled each to self-adminster cocaine for 14 days, then took the drug away for a week but not the levers the animals used to access it.

During that hiatus, he adminstered a drug that stimulates glutamate receptors, possible targets for drugs of abuse.

He found that the F344 strain worked harder to get cocaine than the Lewis rats following treatment with the glutamate drug, suggesting they were more susceptible to relapse.

“Maybe 12-step programs and faith-based programs will be enough to keep some people from relapsing,” says Dr. Kruzich. “For others we may have to come up with medical treatments we can use on top of those to keep them from taking drugs again.”

He says there are many different versions of the hundreds of genes that may play a role in increasing the risk of relapse.

It’s known that some people become addicted more quickly than others, some literally with their first use, he says. The hardest part is not getting people to stop taking drugs: that happens when they are checked in a clinic or put in jail. The real work is keeping them from relapsing when they are out of such restricted environs, he says.

“Something happens, either they see an old colleague they have used with, they go into an old environment, they have a huge stressor in life and they start to want the drug. They have drug hunger, what we call drug craving,” says Dr. Kruzich. “When it gets bad enough, they engage in drug-seeking behavior.”

His lab is working to identify the relapse trigger to use as a target for developing ways to curb craving and subsequent relapse.

His studies focus on an area of the brain called the nucleus accumbens core, a target for drugs of abuse long considered a pleasure center, Dr. Kruzich says. Drugs such as cocaine and methamphetamine stimulate release of dopamine in the nucleus accumbens. Dopamine is a neurotransmitter believed responsible for the euphoria that come with drug use. In fact, animals given dopamine blockers won’t self-adminster drugs of abuse, and dopamine has long been a focus of drug-abuse studies.

“These drugs impinge upon the reward centers of the brain that normally food, sex, survival and adaptation impinge upon,” says Dr. Kruzich. “When you are having that great piece of cheesecake and thinking, ‘Oh man,’ that is the kind of response these drug of abuse are evoking but much more so than that cheesecake could ever do.”

Glutamate, also released in the nucleus accumbens core, may play an equally important role in drug relapse, he says. Drugs such as cocaine appear to alter glutamate neurotransmission in the core, which may contribute to the rewiring of the brain that occurs with drug use. “It’s not that these drugs just damage neurons, which they can, but they rewire the circuitry of the brain so no longer is your spouse or your job or other things in your life important to you. Your brain is tricked into thinking that drugs are the most important thing for your survival,” Dr. Kruzich says.

Unfortunately, drugs that restore glutamate function also produce seizures, so scientists are looking for an indirect approach to restore the misdirected rewiring.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Genetics Plays Role In Relapse Of Illicit Drug-seeking Behavior." ScienceDaily. ScienceDaily, 23 January 2006. <www.sciencedaily.com/releases/2006/01/060123122958.htm>.
Medical College of Georgia. (2006, January 23). Genetics Plays Role In Relapse Of Illicit Drug-seeking Behavior. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2006/01/060123122958.htm
Medical College of Georgia. "Genetics Plays Role In Relapse Of Illicit Drug-seeking Behavior." ScienceDaily. www.sciencedaily.com/releases/2006/01/060123122958.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins