Featured Research

from universities, journals, and other organizations

Johns Hopkins Scientists Map Brain Area That May Aid Hunt For Human Brain Stem Cells

Date:
February 16, 2006
Source:
Johns Hopkins Medical Institutions
Summary:
A study led by a Johns Hopkins neurosurgeon has provided the first comprehensive map of a part of the adult human brain containing astrocytes, cells known to produce growth factors critical to the regeneration of damaged neural tissue and that potentially serve as brain stem cells.

A study led by a Johns Hopkins neurosurgeon has provided the first comprehensive map of a part of the adult human brain containing astrocytes, cells known to produce growth factors critical to the regeneration of damaged neural tissue and that potentially serve as brain stem cells. The mapping study -- using special microscopes and chemical analysis of 42 samples of brain tissue taken at autopsy from seven people, and 43 samples of tissue removed with permission from living patients as part of unrelated neurosurgical procedures -- also revealed evidence of the move of cells lining the ventricles, or ependymal cells, to the same area of the brain, a discovery expected to provide further insight into the critical relationship among ependymal cell, astrocytes and potential brain stem cells.

"Although we have not confirmed the existence of human brain stem cells in vivo or their ability to migrate to parts of the brain that need repair, what we have learned from this complete map of the lateral wall of the subventricle zone or SVZ, including the unexpected existence of ependymal cells there, suggests that additional research is warranted," says Alfredo Quinones-Hinojosa, M.D., lead author of the study and an assistant professor in the Department of Neurosurgery at the Johns Hopkins University School of Medicine. "If there is stem-cell-like activity in the SVZ, this discovery could help pave the way for a number of therapeutic treatments for treating brain cancer, neurodegenerative diseases and brain damage."

The subventricle zone refers to tissue and cells that lie next to the ventricles or tubes located in the center of the brain that act as conduits for the cerebral spinal fluid that bathes the entire brain. The ependymal layer is a layer of cells that make up the outer wall of these tubes. Behind that layer lies the SVZ.

Previous studies have shown that astrocytes located in rodent SVZs travel to the olfactory bulb, where they develop into new brain cells, according to Quinones. However, the human SVZ is structured differently. And even though astrocytes have been identified in the adult human SVZ, there is no evidence that they migrate to other parts of adult brains and behave like brain stem cells.

Because the potential existence of human brain stem cells could have an enormous impact in understanding and subsequently developing treatments for brain diseases and injury, Quinones says his team set out to learn more about how new cells are formed in this critical area in the adult human brain.

"To date, only a small portion of this region has been mapped. This new study give us a better understanding of the organization of this SVZ and the cell-to-cell interaction throughout the SVZ," says Quinones.

The study also revealed that there were displaced ependymal cells in the SVZ that should not be there, according to Quinones. And although no firm connection has been established between astrocytes and ependymal cells, the fact that they are both in this region warrants further study.

"We do not think that ependymal cells are stem cells," he says." However, they might mutate and become cancerous. They might be communicating or relating to astrocytes. At this point, we are only scratching the surface. But if we can achieve a better understanding of why these cells are there and how they function and/or migrate, this could help us treat brain tumors such as ependynomas or even gliomas as well as help us treat neurodegenerative diseases and brain trauma," he says.

Quinones says an important aspect of this study is the use of tissue removed during therapeutic surgery that would have otherwise been discarded.

"We used the operating room as an extension of the laboratory. Instead of throwing tissue away, we asked patients if is was Ok and then saved tissue to study it," he says.

Quinones says the next step is to better understand the various roles of astrocytes in the adult human brain and patterns of potential migration of these cells.

The study was conducted while Quinones was at the University of California at San Francisco and included researchers from the Department of Cellular Biology at the University of Valencia in Spain.

###

This study was supported by a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Johns Hopkins Scientists Map Brain Area That May Aid Hunt For Human Brain Stem Cells." ScienceDaily. ScienceDaily, 16 February 2006. <www.sciencedaily.com/releases/2006/02/060216231713.htm>.
Johns Hopkins Medical Institutions. (2006, February 16). Johns Hopkins Scientists Map Brain Area That May Aid Hunt For Human Brain Stem Cells. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/02/060216231713.htm
Johns Hopkins Medical Institutions. "Johns Hopkins Scientists Map Brain Area That May Aid Hunt For Human Brain Stem Cells." ScienceDaily. www.sciencedaily.com/releases/2006/02/060216231713.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins