Featured Research

from universities, journals, and other organizations

Researchers Use Embryonic Model To Reprogram Malignant Melanoma

Date:
February 28, 2006
Source:
Northwestern University
Summary:
Scientists at Northwestern University and the Stowers Institute for Medical Research have reprogrammed malignant melanoma cells to become normal melanocytes, or pigment cells, a development that may hold promise in treating of one of the deadliest forms of cancer.

Scientists at Northwestern University and the Stowers Institute for Medical Research have reprogrammed malignant melanoma cells to become normal melanocytes, or pigment cells, a development that may hold promise in treating of one of the deadliest forms of cancer.

Related Articles


A report describing the group's research was published in the Feb. 27 online edition of the Proceedings of the National Academy of Sciences that will appear in the March 7 issue of the journal.

The experiments were conducted as a collaboration involving the laboratories of Mary J. C. Hendrix, president and scientific director of the Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, and Paul M. Kulesa, director of Imaging at the Stowers Institute for Medical Research in Kansas City, Mo.

Hendrix is professor of pediatrics at the Feinberg School and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The study demonstrated the ability of malignant melanoma cells to respond to embryonic environmental cues in a chick model -- in a manner similar to neural crest cells, the cell type from which melanocytes originate -- inducing malignant cells express genes associated with a normal melanocyte.

The researchers also showed that the malignant melanoma cells lost their tumor-causing ability as they became reprogrammed by the embryonic microenvironment to assume a more normal melanocyte-like cell type.

"Using this innovative approach, further investigation of the cellular and molecular interactions within the tumor cell embryonic chick microenviroment should allow us to identify and test potential candidate molecules to control and reprogram metastatic melanoma cells," Hendrix said.

Neural crest cells give rise to pigment cells as well as bone and cartilage, neurons and other cells of the nervous system. During embryonic development, neural crest cells display "invasive" behavior, similar to metastatic cancer cells, migrating from the neural tube (which becomes the brain and spinal cord) to form tissues along specific pathways.

Kulesa's laboratory transplanted adult human metastatic melanoma cells, isolated and characterized by the Hendrix laboratory group, into the neural tube of chick embryos.

The transplanted melanoma cells did not form tumors.

Rather, like neural crest cells, the melanoma cells invaded surrounding chick tissues in a programmed manner, distributing along the neural-crest-cell migratory pathways throughout the chick embryo.

The investigators found that a subpopulation of the invading melanoma cells produced markers indicative of skin cells and neurons that had not been present at the time of transplantation.

Taken together, results of this study suggest that human metastatic melanoma cells respond to and are influenced by the chick embryonic neural-crest-rich microenvironment, which may hold promise for the development of new therapeutic strategies, the researchers said.

"This idea was pioneered 30 years ago by scientists who thought that the complex signals within an embryonic field may reprogram an adult metastatic cancer cell introduced into such an environment and cause it to contribute in a positive way to an embryonic structure," Kulesa said.

"Today, we have advanced imaging and molecular techniques that allow us to pose the same questions within an intact chick embryo and directly study the molecular signals involved in the reprogramming. The ancestral relationship between melanoma and the neural crest provides a wonderful bridge between developmental and cancer biology," Kulesa said.

One of the hallmarks of aggressive cancer cells, including malignant melanoma, is their unspecified, plastic nature, which is similar to that of embryonic stem cells.

The Hendrix lab has shown that the unspecified or poorly differentiated cell type serves as an advantage to cancer cells by enhancing their ability to migrate, invade and metastasize virtually undetected by the immune system.

Also collaborating on this research were Jennifer C. Kasemeier and Jessica Teddy, Stowers Institute; and Naira V. Margaryan; Elisabeth A. Seftor; and Richard E. B. Seftor, Children's Memorial Research Center.



Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Researchers Use Embryonic Model To Reprogram Malignant Melanoma." ScienceDaily. ScienceDaily, 28 February 2006. <www.sciencedaily.com/releases/2006/02/060227184225.htm>.
Northwestern University. (2006, February 28). Researchers Use Embryonic Model To Reprogram Malignant Melanoma. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2006/02/060227184225.htm
Northwestern University. "Researchers Use Embryonic Model To Reprogram Malignant Melanoma." ScienceDaily. www.sciencedaily.com/releases/2006/02/060227184225.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins