Featured Research

from universities, journals, and other organizations

Computer Model Maps Strengths, Weaknesses Of Nanotubes

Date:
March 29, 2006
Source:
Rice University
Summary:
In theory, carbon nanotubes are 100 times stronger than steel, but in practice they've proven much weaker, raising questions about precisely how they break and why. A new computer modeling approach described in this week's Proceedings of the National Academy of Sciences offers new clues. The model creates a "strength map" for dozens of types of nanotubes, plotting the likelihood or probability that a given tube will break under specific conditions.

In theory, carbon nanotubes are 100 times stronger than steel, but in practice, scientists have struggled make nanotubes that live up to those predictions, in part, because there are still many unanswered questions about how nanotubes break and under what conditions.

Because nanotubes are single molecules - about 80,000 times smaller than a human hair - finding out what makes them break involves the study of molecular bonds, atomic dynamics and complex quantum phenomena. The fact that there are hundreds of different kinds of nanotubes, sometimes with radically different properties, adds to the complexity.

A new computer modeling approach developed by materials scientists at Rice University and the University of Minnesota is allowing researchers to create a "strength map" that plots the likelihood or probability that a nanotube will break - and how it's likely to break - based on four key variables.

"Nanotubes break in one of two ways: the bonds either snap in a brittle fashion or they stretch and deform," said Boris Yakobson, professor of mechanical engineering and materials science and of chemistry. "We found that the underlying mechanisms that cause both types of breaks are each present at the same time. Even in a particular test, either type of break can occur, but we were able to map out a pattern - based on statistical probabilities - of what was likely to occur in a range of conditions for the whole catalog of nanotube species."

Yakobson's results appear in this week's online edition of the Proceedings of the National Adacemy of Sciences.

Carbon nanotubes are single molecules of pure carbon. They are long, narrow, hollow cylinders with walls just one atom thick. Scientists estimate SWNTs are about 100 times stronger than steel at one-sixth the weight. By comparison, Kevlarฎ -- the fiber used in most bulletproof body armor -- is about five times stronger than an equal weight of steel.

The precise diameter of a nanotube can vary from less than half of a nanometer - a billionth of a meter - to more than three nanometers. Nanotubes can also vary by the angle at which they are twisted. This is known as the chiral angle, and a useful analogy is a roll of gift-wrap paper. If the roll is rewound carefully, there is no overhang on either end. However, if the roll wound at an odd angle, excess paper hangs off at one end.

The chiral angle of nanotubes can vary from 0 degrees (no paper hanging off the roll) to 30 degrees, and tubes with different chiralities and diameters can have very different physical properties. Some are metals for instance and others are not.

In developing his computational model of nanotube breaking patterns, Yakobson consider four critical values: load level, load duration, temperature and chirality.

"The breaking mechanism for a particular nanotube depends to a great extent on its intrinsic twist called chirality," said co-author Traian Dumitrica, a former Rice postdoctoral researcher who is now assistant professor of mechanical engineering at the University of Minnesota. "Yet, temperature still influences the outcome. We were able to summarize the intricate dependence on parameters in a map , which stands as a striking example for the predictive power of simulations in materials science research."

Rice doctoral student Ming Hua also co-authored the paper. The research was funded by NASA, the Office of Naval Research and the Welch Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Computer Model Maps Strengths, Weaknesses Of Nanotubes." ScienceDaily. ScienceDaily, 29 March 2006. <www.sciencedaily.com/releases/2006/03/060328224559.htm>.
Rice University. (2006, March 29). Computer Model Maps Strengths, Weaknesses Of Nanotubes. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2006/03/060328224559.htm
Rice University. "Computer Model Maps Strengths, Weaknesses Of Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2006/03/060328224559.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins