Featured Research

from universities, journals, and other organizations

Device Only Atoms Across May Allow Infinitesimal But Powerful Computers

Date:
April 4, 2006
Source:
National Science Foundation
Summary:
Using the power of modern computing combined with innovative theoretical tools, an international team of researchers has determined how a one-way electrical valve, or diode, made of only a single molecule does its job.

Researchers at the University of Chicago recently created a single-molecule diode only a few tens of atoms in size and 1,000 times smaller than its conventional counterparts. Theorists from the University of South Florida and the Russian Academy of Sciences recently determined how the device works. The researchers found electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another.
Credit: Trent Schindler, National Science Foundation

Using the power of modern computing combined with innovative theoretical tools, an international team of researchers has determined how a one-way electrical valve, or diode, made of only a single molecule does its job.

Diodes are critical components within computer, audio equipment and countless other electronic devices. If designers can swap existing diodes with the single-molecule one, the products could be shrunk to incredibly small sizes.

The technology may allow computer designers to sustain "Moore's Law"--a prediction made by Intel co-founder Gordon Moore in 1965--which suggested technological advances will allow a doubling every 18 months in the number of transistors that can fit on a computer chip. But the "law" has been nearing the end of its useful life as ever-shrinking silicon chips approach their physical limits.

Created by a research team at the University of Chicago, the single-molecule diode is merely a few tens of atoms in size and 1,000 times smaller than its conventional counterparts. Recently, theorists from the University of South Florida and the Russian Academy of Sciences have explained the principles that make the device work.

The researchers showed electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another. Because the molecule in the diode is asymmetrical, the electronic response is also asymmetrical when voltage is applied. The asymmetry contributes to a phenomenon called molecular rectification: the channels conduct electrons in one direction, but limit flow in the opposite direction when the voltage polarity reverses. That property makes the molecular diode a potential gatekeeper for circuits and a candidate to one day replace silicon in computer chips.

Researchers from all three institutions reported their findings in the March 10 issue of Physical Review Letters. The work was supported by several National Science Foundation grants.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Device Only Atoms Across May Allow Infinitesimal But Powerful Computers." ScienceDaily. ScienceDaily, 4 April 2006. <www.sciencedaily.com/releases/2006/04/060403230648.htm>.
National Science Foundation. (2006, April 4). Device Only Atoms Across May Allow Infinitesimal But Powerful Computers. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2006/04/060403230648.htm
National Science Foundation. "Device Only Atoms Across May Allow Infinitesimal But Powerful Computers." ScienceDaily. www.sciencedaily.com/releases/2006/04/060403230648.htm (accessed July 24, 2014).

Share This




More Computers & Math News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Six Indicted in StubHub Hacking Scheme

Six Indicted in StubHub Hacking Scheme

AP (July 23, 2014) Six people were indicted Wednesday in an international ring that took over more than 1,000 StubHub users' accounts and fraudulently bought tickets that were then resold. (July 23) Video provided by AP
Powered by NewsLook.com
The Reviews Are In For The Amazon Fire Phone

The Reviews Are In For The Amazon Fire Phone

Newsy (July 23, 2014) Amazon's first smartphone, the Fire Phone, is set to ship this week, and so far the reviews have been pretty mixed. Video provided by Newsy
Powered by NewsLook.com
Bigger Apple Phone, Bigger Orders

Bigger Apple Phone, Bigger Orders

Reuters - Business Video Online (July 22, 2014) Apple is asking suppliers to make 70 to 80 million units of its new larger screen iPhone, a lot more initially than its current model. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins