Featured Research

from universities, journals, and other organizations

Device Only Atoms Across May Allow Infinitesimal But Powerful Computers

Date:
April 4, 2006
Source:
National Science Foundation
Summary:
Using the power of modern computing combined with innovative theoretical tools, an international team of researchers has determined how a one-way electrical valve, or diode, made of only a single molecule does its job.

Researchers at the University of Chicago recently created a single-molecule diode only a few tens of atoms in size and 1,000 times smaller than its conventional counterparts. Theorists from the University of South Florida and the Russian Academy of Sciences recently determined how the device works. The researchers found electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another.
Credit: Trent Schindler, National Science Foundation

Using the power of modern computing combined with innovative theoretical tools, an international team of researchers has determined how a one-way electrical valve, or diode, made of only a single molecule does its job.

Related Articles


Diodes are critical components within computer, audio equipment and countless other electronic devices. If designers can swap existing diodes with the single-molecule one, the products could be shrunk to incredibly small sizes.

The technology may allow computer designers to sustain "Moore's Law"--a prediction made by Intel co-founder Gordon Moore in 1965--which suggested technological advances will allow a doubling every 18 months in the number of transistors that can fit on a computer chip. But the "law" has been nearing the end of its useful life as ever-shrinking silicon chips approach their physical limits.

Created by a research team at the University of Chicago, the single-molecule diode is merely a few tens of atoms in size and 1,000 times smaller than its conventional counterparts. Recently, theorists from the University of South Florida and the Russian Academy of Sciences have explained the principles that make the device work.

The researchers showed electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another. Because the molecule in the diode is asymmetrical, the electronic response is also asymmetrical when voltage is applied. The asymmetry contributes to a phenomenon called molecular rectification: the channels conduct electrons in one direction, but limit flow in the opposite direction when the voltage polarity reverses. That property makes the molecular diode a potential gatekeeper for circuits and a candidate to one day replace silicon in computer chips.

Researchers from all three institutions reported their findings in the March 10 issue of Physical Review Letters. The work was supported by several National Science Foundation grants.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Device Only Atoms Across May Allow Infinitesimal But Powerful Computers." ScienceDaily. ScienceDaily, 4 April 2006. <www.sciencedaily.com/releases/2006/04/060403230648.htm>.
National Science Foundation. (2006, April 4). Device Only Atoms Across May Allow Infinitesimal But Powerful Computers. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2006/04/060403230648.htm
National Science Foundation. "Device Only Atoms Across May Allow Infinitesimal But Powerful Computers." ScienceDaily. www.sciencedaily.com/releases/2006/04/060403230648.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
You Now 'Get' No-Cost Downloads In Apple's App Store

You Now 'Get' No-Cost Downloads In Apple's App Store

Newsy (Nov. 20, 2014) Apple has changed its App Store wording from "Free" to "Get," as the European Commission and Federal Trade Commission seek to protect consumers. Video provided by Newsy
Powered by NewsLook.com
Google Blocks Its Own Ads With New Contributor Program

Google Blocks Its Own Ads With New Contributor Program

Newsy (Nov. 20, 2014) Google's unveiled a crowdfunding platform dubbed Contributor, which allows people to pay for ad-free sites. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins