Featured Research

from universities, journals, and other organizations

Nanopore Method Could Revolutionize Genome Sequencing

Date:
April 10, 2006
Source:
University of California - San Diego
Summary:
A team led by physicists at the University of California, San Diego has shown the feasibility of a fast, inexpensive technique to sequence DNA as it passes through tiny pores. The advance brings personalized, genome-based medicine closer to reality.

DNA and nanopore from above.
Credit: Johan Lagerqvist

A team led by physicists at the University of California, San Diego has shown the feasibility of a fast, inexpensive technique to sequence DNA as it passes through tiny pores. The advance brings personalized, genome-based medicine closer to reality.

The paper, published in the April issue of the journal Nano Letters, describes a method to sequence a human genome in a matter of hours at a potentially low cost, by measuring the electrical perturbations generated by a single strand of DNA as it passes through a pore more than a thousand times smaller than the diameter of a human hair. Because sequencing a person’s genome would take several months and millions of dollars with current DNA sequencing technology, the researchers say that the new method has the potential to usher in a revolution in medicine.

“Current DNA sequencing methods are too slow and expensive for it to be realistic to sequence people’s genomes to tailor medical treatments for each individual,” said Massimiliano Di Ventra, an associate professor of physics at UCSD who directed the project. “The practical implementation of our approach could make the dream of personalizing medicine according to a person’s unique genetic makeup a reality.”

The physicists used mathematical calculations and computer modeling of the motions and electrical fluctuations of DNA molecules to determine how to distinguish each of the four different bases (A, G, C, T) that constitute a strand of DNA. They based their calculations on a pore about a nanometer in diameter made from silicon nitride—a material that is easy to work with and commonly used in nanostructures—surrounded by two pairs of tiny gold electrodes. The electrodes would record the electrical current perpendicular to the DNA strand as the DNA passed through the pore. Because each DNA base is structurally and chemically different, each base creates its own distinct electronic signature.

Previous attempts to sequence DNA using nanopores were not successful because the twisting and turning of the DNA strand introduced too much noise into the signal being recorded. The new idea takes advantage of the electric field that drives the current perpendicular to the DNA strand to reduce the structural fluctuations of DNA while it moves through the pore, thus minimizing the noise.

“If nature was very unkind, then the DNA would always fluctuate so much as it passes through the nanopore that measuring the current would not give us any information about what base is present at a particular location,” explained Michael Zwolak, a graduate student in physics at the California Institute of Technology who contributed to the study. “However, we have identified a particular way to operate the nanopore/electrode system that suppresses some of the fluctuations so they aren't so great as to destroy the distinguishability of the bases.”

The researchers caution that there are still hurdles to overcome because no one has yet made a nanopore with the required configuration of electrodes, but they think it is only a matter of time before someone successfully assembles the device. The nanopore and the electrodes have been made separately, and although it is technically challenging to bring them together, the field is advancing so rapidly that they think it should be possible in the near future.

In addition to the speed and low cost of the nanopore method, the researchers calculate that it will ultimately be significantly less error-prone than current methods.

“The DNA sequencing method we propose has the potential of having fewer errors than the present method, which is based on the Sanger method,” said Johan Lagerqvist, a graduate student in physics at UCSD and the lead author on the paper. “It should be possible to sequence strands of DNA that are tens of thousands of base pairs in length, possibly as long as an entire gene, in one pass through the nanopore. With the Sanger method it is necessary to chop the DNA into smaller pieces, copy the DNA and use multiple sequencing machines, which introduces additional sources of error.”

The study was funded by the National Science Foundation and by the National Human Genome Research Institute at the National Institutes of Health. The NIH funds are from a program launched in 2004 to encourage researchers to pursue a wide range of ideas to sequence a mammal-sized genome for $1,000. The researchers say that as physicists they take a unique approach to the problem.

“We don’t think of it as DNA, we view it as a bunch of atoms and electrons that behave in ways we can predict and manipulate,” said Di Ventra.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Nanopore Method Could Revolutionize Genome Sequencing." ScienceDaily. ScienceDaily, 10 April 2006. <www.sciencedaily.com/releases/2006/04/060409153612.htm>.
University of California - San Diego. (2006, April 10). Nanopore Method Could Revolutionize Genome Sequencing. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2006/04/060409153612.htm
University of California - San Diego. "Nanopore Method Could Revolutionize Genome Sequencing." ScienceDaily. www.sciencedaily.com/releases/2006/04/060409153612.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins