Featured Research

from universities, journals, and other organizations

Micro-pump Is Cool Idea For Future Computer Chips

Date:
April 27, 2006
Source:
Purdue University
Summary:
Engineers at Purdue University have developed a tiny "micro-pump" cooling device small enough to fit on a computer chip that circulates coolant through channels etched into the chip.

Brian D. Iverson, a mechanical engineering doctoral student at Purdue, holds up a disk containing several "micro-pump" cooling devices small enough to fit on a computer chip. The tiny pumps circulate coolant through channels etched into the chip. (Purdue News Service photo/David Umberger)

Engineers at Purdue University have developed a tiny "micro-pump" cooling device small enough to fit on a computer chip that circulates coolant through channels etched into the chip.

Innovative cooling systems will be needed for future computer chips that will generate more heat than current technology, and this extra heating could damage electronic devices or hinder performance, said Suresh Garimella, a professor of mechanical engineering.

The new device has been integrated onto a silicon chip that is about 1 centimeter square, or roughly one-sixth of a square inch. The technology is an example of a microelectromechanical system, or MEMS, a tiny mechanical device fabricated using methods generally associated with microelectronics.

"Because it's a MEMS pump, we were able to integrate the entire cooling system right onto a chip," Garimella said. "The most innovative part of the technology is the micro-pump."

An article about the cooling device will appear in the May issue of Electronics Cooling magazine. The article was written by doctoral student Brian D. Iverson, Garimella and former doctoral student Vishal Singhal, who recently graduated and co-founded Thorrn Micro Technologies Inc., in Redwood City, Calif.

Chips in today's computers are cooled primarily with an assembly containing conventional fans and "heat sinks," or metal plates containing fins to dissipate heat. But because chips a decade from now will likely contain upwards of 100 times more transistors and other devices, they will generate far more heat than chips currently in use, Garimella said.

"Our goal is to develop advanced cooling systems that are self-contained on chips and are capable of handling the more extreme heating in future chips," said Garimella, director of Purdue's Cooling Technologies Research Center. The center, supported by the National Science Foundation, industry and Purdue, was formed to help corporations develop miniature cooling technologies for a wide range of applications, from electronics and computers to telecommunications and advanced aircraft.

The prototype chip contains numerous water-filled micro-channels, grooves about 100 microns wide, or about the width of a human hair. The channels are covered with a series of hundreds of electrodes, electronic devices that receive varying voltage pulses in such a way that a traveling electric field is created in each channel. The traveling field creates ions, or electrically charged atoms and molecules, which are dragged along by the moving field.

"Say every sixth electrode receives the same voltage, these varying voltages from one electrode to the next produce a traveling electrical field that pulls the ions forward, causing the water to flow and inducing a cooling action," Garimella said. "Essentially, you are pumping fluid forward."

This pumping action is created by a phenomenon called electrohydrodynamics, which uses the interactions of ions and electric fields to cause fluid to flow.

"Engineers have been using electrohydrodynamics to move fluids with electric fields for a long time, but it's unusual to be able to do this on the micro-scale as we have demonstrated," Garimella said.

The researchers also have added a feature to boost the force of the pumping action. A thin sheet of piezoelectric material, which expands and contracts in response to an electric current, was glued on top of the cover of the liquid-filled channels.

"This material acts as a diaphragm that deforms up and down when you give it a voltage, causing it to push additional flow through the channels," Garimella said. "We have developed mathematical models that show this piezo action enhances the electrohydrodynamic performance."

The diaphragm has enhanced the pumping action by 13 percent in the current prototype, but the modeling indicates a possible enhancement of 100 percent or greater, he said.

"Although electrohydrodynamics has generally not been considered practical for pumping applications due to the assumption that it requires a large amount of energy and does not produce enough motive force for thrust, the method has been shown to be far more efficient for micro-cooling applications," Garimella said. "We have shown that the power input required is in the microwatts, but you can get milliwatts of cooling. In other words, the cooling effect is more than a thousand times greater than the energy needed to drive the system. That's because all we need to do is create enough of a flow to induce cooling."

However, several major challenges remain.

"One big challenge is further developing mathematical models that are comprehensive and accurate because this is a very complicated, dynamic system," Garimella said. "You've got fluid flow on a micro-scale, you've got electrohydrodynamic effects, electrical fields and a moving diaphragm."

Other challenges include sealing the tiny channels to prevent water leakage and designing the system so that it could be manufactured under the same conditions as semiconductor chips.

The work has been funded by the Indiana 21st Century Research and Technology Fund. Garimella is a member of the Birck Nanotechnology Center at Purdue's Discovery Park.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Micro-pump Is Cool Idea For Future Computer Chips." ScienceDaily. ScienceDaily, 27 April 2006. <www.sciencedaily.com/releases/2006/04/060426183753.htm>.
Purdue University. (2006, April 27). Micro-pump Is Cool Idea For Future Computer Chips. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2006/04/060426183753.htm
Purdue University. "Micro-pump Is Cool Idea For Future Computer Chips." ScienceDaily. www.sciencedaily.com/releases/2006/04/060426183753.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins