Featured Research

from universities, journals, and other organizations

Researchers Tie Metal's Strength To Three Line Defects

Date:
May 1, 2006
Source:
Lawrence Livermore National Laboratory
Summary:
Lab researchers have discovered that three is the magic number when it comes to strengthening metals. Since the Iron Age, metallurgists have known that metals such as steel become stronger and harder the more you hit (or beat) on them. But it wasn't always clear why this happened. Vasily Bulatov and colleagues at Lawrence Livermore National Laboratory discovered that the common explanation for this hardening process ignored a key component.

Atomistic simulation reveals the multijunctions in the metal molybdenum.
Credit: Image courtesy of Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory researchers have discovered that three is the magic number when it comes to strengthening metals.

Since the Iron Age, metallurgists have known that metals such as steel become stronger and harder the more you hit (or beat) on them.

But it wasn't always clear why this happened. Vasily Bulatov and colleagues at Lawrence Livermore National Laboratory discovered that the common explanation for this hardening process ignored a key component.

Through a series of computer simulations and experiments using the metal molybdenum, the team determined that three line defects (also known as dislocations) in the crystal structure of metals create a stronger bond than when only two dislocations intersect. Dislocations are the displacements of the regularly packed layers of atoms within the crystal structure.

The theory of dislocation was invented in the 1930s. Research since then has focused on dislocation interactions and their role in hardening metals, in which continued deformation increases the metal’s strength (much like a blacksmith pounding on steel with an anvil).

But the Livermore team found that three or more dislocations create a strong, nearly indestructible locking mechanism. “When you beat on metal, dislocations multiply like crazy,” Bulatov said. “The metal gets stronger, but we didn't know exactly how that strength came about. What we found was that the strength becomes greater each time three dislocation lines intersect.”

Bulatov said the hardening mechanism could be applied in any strong metal, from bridges to ships to rebar within the walls of buildings.

Potentially, you can take advantage of this behavior,” he said. “Dislocation interaction was known for 70 years. We now show exactly how it happens. Two at the time was thought to do it, but three at a time makes a big difference.”

The research appears in the April 27 edition of the journal Nature. Other Livermore researchers include Luke Hsiung, Meijie Tang, Athanasios Arsenlis, Maria Bartelt, Wei Cai, Jeff Florando, Masato Hiratani, Moon Rhee, Gregg Hommes, Tim Pierce and Tomas Diaz de la Rubia.

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.


Story Source:

The above story is based on materials provided by Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Livermore National Laboratory. "Researchers Tie Metal's Strength To Three Line Defects." ScienceDaily. ScienceDaily, 1 May 2006. <www.sciencedaily.com/releases/2006/04/060430231016.htm>.
Lawrence Livermore National Laboratory. (2006, May 1). Researchers Tie Metal's Strength To Three Line Defects. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2006/04/060430231016.htm
Lawrence Livermore National Laboratory. "Researchers Tie Metal's Strength To Three Line Defects." ScienceDaily. www.sciencedaily.com/releases/2006/04/060430231016.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins