Featured Research

from universities, journals, and other organizations

Selectively Blocking Inflammatory Signals May Protect Mice From Multiple Sclerosis

Date:
May 11, 2006
Source:
University of Chicago Medical Center
Summary:
A new way to preserve the cells that surround and protect nerves could lead to new treatments for demyelinating diseases such a multiple sclerosis.

A new way to preserve the cells that surround and protect nerves could lead to new treatments for demyelinating diseases such a multiple sclerosis, a research team reports in the May 10, 2006, issue of the Journal of Neuroscience.

Related Articles


The approach grew out of a novel explanation, quickly gaining followers, for the mechanism of nerve damage caused by multiple sclerosis. Instead of concentrating on the alterations that result in autoimmune assaults on the nervous system, researchers led by Brian Popko of the University of Chicago have focused on a set of factors that prevent recovery from the inflammatory attacks.

A series of papers from Popko's lab has demonstrated that interferon-gamma -- a chemical signal used to activate the immune system -- plays a critical role in damaging the cells that produce myelin, the protective coating that lines healthy nerves. Interferon not only leaves these cells, called oligodendrocytes, incapable of repairing the damage but can also kill them directly.

"Interferon-gamma is not normally found in the nervous system," said Popko, the Jack Miller Professor of Neurological Diseases at the University of Chicago, "but it can gain entry after an inflammatory flare-up. We previously showed how it harmed oligodendrocytes. Here we confirm its direct harmful effects on those cells and demonstrate one way of protecting them."

The researchers produced a series of transgenic mice. In one set they introduced genes that produced interferon-gamma within the central nervous system. In another set they also introduced a gene (known as suppressor of cytokine signaling 1, or SOCS1) that blocked the response of myelin-producing cells to interferon-gamma.

Although transgenic mice with low levels of interferon-gamma showed no symptoms of nervous system damage, 18 out of 20 mice exposed to higher interferon levels developed difficulty walking, including mild to moderate tremors, within two weeks of birth. Only four out of 20 mice with both high interferon levels and the SOCS1 gene had symptoms.

On autopsy, mice with high interferon levels in the nervous system had severe loss of oligodendrocytes, ranging from 20 to 40 percent. Those with the protective SOCS1 gene lost only eight to 15 percent.

High interferon levels were also associated with loss of myelin sheaths around nerve connections and unprotected axons in the brain. Again, SOCS1 was able to reduce the damage.

"Together," the researchers wrote, "these data demonstrate that oligodendroglial expression of SOCS1 protects mice from the clinical and morphological consequences of IFN-gamma expression in the central nervous system during development."

"We found this tremendously encouraging," said Popko. "SOCS1 prevented or reduced the harmful effects of interferon gamma on myelin-producing cells. This study solidifies our suspicions about interferon's specific role in demyelinating disease and suggests ways to block it."

Although there is currently no reliable way to deliver SOCS1 directly to the nerves of a patient with multiple sclerosis, this protective approach could be combined with stem cell therapy to repair nerve damage. Several research groups are already studying the use of stem cells to repair damaged myelin sheaths, but in the long term those stem cells would be vulnerable to ongoing immune-mediated damage.

But if stem cells could be engineered to resist harmful signals such as interferon-gamma, they might be protected from the "harsh environment" present in immune mediated demyelinated lesions, said Popko.

The National Institutes of Health and the Myelin Repair Foundation supported the research. Additional authors include Roumen Balabanov and Ji Yeon Lee of the University of Chicago, Krystal Strand of the University of North Carolina, and April Kemper of Wake Forest University.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Chicago Medical Center. "Selectively Blocking Inflammatory Signals May Protect Mice From Multiple Sclerosis." ScienceDaily. ScienceDaily, 11 May 2006. <www.sciencedaily.com/releases/2006/05/060511084528.htm>.
University of Chicago Medical Center. (2006, May 11). Selectively Blocking Inflammatory Signals May Protect Mice From Multiple Sclerosis. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2006/05/060511084528.htm
University of Chicago Medical Center. "Selectively Blocking Inflammatory Signals May Protect Mice From Multiple Sclerosis." ScienceDaily. www.sciencedaily.com/releases/2006/05/060511084528.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins