Featured Research

from universities, journals, and other organizations

Smashing Young Stars Leave Dwarfs In Their Wake

Date:
June 12, 2006
Source:
McMaster University
Summary:
Astronomers have discovered that the large disks of gas and dust around young stars will fragment if two young stars pass close to each other and form smaller brown dwarfs stars with disks of their own.

Visualizations of brown dwarf simulations completed by Sijing Shen for her Master's Thesis (May 2006) under the supervision of James Wadsley.
Credit: Image courtesy of McMaster University

Astronomers have discovered that the large disks of gas and dust around young stars will fragment if two young stars pass close to each other and form smaller brown dwarfs stars with disks of their own. The news was announced this week at the Canadian Astronomical Society in Calgary, Alta, by James Wadsley, assistant professor of Physics & Astronomy at McMaster University, and his student Sijing Shen.

"This is an exciting discovery because it may be the dominant way brown dwarfs are made," says Wadsley. "The challenge to theorists was to explain not only the origin of brown dwarfs but also the details telescopes are seeing: brown dwarfs with disks and the systems of many dwarfs orbiting a single regular star. We've done that."

Brown dwarf stars are as common in number as large stars but are no more than 8 percent of the mass of the Sun. Their low mass prevents nuclear fusion in their core so they don't shine like regular stars. Regular stars form from cold dense cores in giant molecular gas clouds. The natural mass of a core is expected to be large, closer to that of a regular star than a brown dwarf so something extra was required to understand the origin of brown dwarfs.

Using SHARCNET (Shared Hierarchical Academic Research Computing Network) parallel computing facilities at McMaster, Shen and Wadsley simulated several encounters between young stars with disks at unprecedented resolution, seeing gas pile-ups, drawn-out tidal arms and huge masses of gas driven closer to the stars. Amid this chaos several small objects were seen to form, from Jupiter-sized objects up to brown dwarfs. Reports from lower resolution simulations by other groups had shown no indication of disks. However, in every case, the new objects had disks with sizes ranging up to 18 astronomical units (the size of Saturn's orbit). As these rapidly spinning disks evolve they should produce jets of gas and even result in the formation of planets orbiting the brown dwarfs. Both these things have been observed in nature.

"We had no idea the simulated results would be so beautiful and complex, and then we found out that observations were revealing brown dwarfs with disks that matched what we were seeing, " said Shen, who is studying for her PhD in Physics & Astronomy at McMaster.

The simulated objects would either leave the stars on their own or in groups, or remain as multiple brown dwarf companions to a star. Telescopes have detected up to three brown dwarfs orbiting a regular star. Thus the brown dwarfs and planets in the simulations are remarkably similar to what is observed. However, it remains to be determined exactly how often such encounters occur in nature and what fraction of those encounters reliably produce brown dwarfs. For this, Shen and Wadsley are planning a much larger set of encounter simulations using SHARCNET's new supercomputers.

The research was supported by a grant from the Natural Science and Engineering Research Council of Canada.


Story Source:

The above story is based on materials provided by McMaster University. Note: Materials may be edited for content and length.


Cite This Page:

McMaster University. "Smashing Young Stars Leave Dwarfs In Their Wake." ScienceDaily. ScienceDaily, 12 June 2006. <www.sciencedaily.com/releases/2006/06/060611101528.htm>.
McMaster University. (2006, June 12). Smashing Young Stars Leave Dwarfs In Their Wake. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/06/060611101528.htm
McMaster University. "Smashing Young Stars Leave Dwarfs In Their Wake." ScienceDaily. www.sciencedaily.com/releases/2006/06/060611101528.htm (accessed July 23, 2014).

Share This




More Space & Time News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins