Featured Research

from universities, journals, and other organizations

Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells

Date:
June 13, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers at the University of Pennsylvania School of Medicine have discovered part of the reason why cold sores, caused by a herpes virus, come back again and again. The new study points to a small RNA molecule, called a microRNA as the culprit that keeps the latent virus-infected cell alive. These findings could one day lead to a new way to fight the virus and offers the first target for intervention in the latent infection.

Neurons (large round cells) latently infected with herpes simplex virus-1. The latency-associated transcript (LAT) probe is the black area within certain cells. LAT microRNA works through a process called RNA interference to prevent normal cell death or apoptosis, so that latent viral infection is maintained for the lifetime of the individual because the infected cell does not die.
Credit: Image Nigel W. Fraser, PhD, University of Pennsylvania School of Medicine

Researchers at the University of Pennsylvania School of Medicine have discovered part of the reason why cold sores, caused by a herpes virus, come back again and again. The new study, published online last month in Nature, points to a small RNA molecule, called a microRNA (miRNA) as the culprit that keeps the latent virus-infected cell alive. These findings could one day lead to a new way to fight the virus and offers the first target for intervention in the latent infection.

A research team led by Nigel W. Fraser, PhD, Professor of Microbiology, has found that herpes simplex virus-1 (HSV-1), the virus that causes cold sores and ocular keratitis, produces an miRNA molecule. This miRNA is encoded by the Latency-Associated Transcript gene (LAT) in the viral genome and works through a process called RNA interference to prevent normal cell death or apoptosis. Thus, the latent viral infection is maintained for the lifetime of the individual because the latently infected cell does not die."

“Although miRNAs encoded by cellular genes are known to be an important mechanism for controlling gene expression, this is one of the first miRNA found to be encoded by a viral genome,” says Fraser. “Our study helps show how HSV-1 can maintain a latent infection for the lifetime of an infected individual.”

The LAT gene was discovered by Fraser and colleagues in 1984, but a protein product from this gene has never been found. This caused Fraser and his research team to hypothesize that LAT may work through an miRNA molecule, which is a small piece of the LAT gene. It interferes with the translation of two cell proteins that are required for cell death: TGF-b and SMAD-3. The LAT miRNA binds to specific sequences of messenger RNA from these two genes and causes them to be degraded. Thus, the amount of TGF-b and SMAD-3 protein is reduced in the cell and apoptosis is prevented. Because the latent virus is not producing any viral proteins the immune system of the infected individual cannot detect the infected cell.

Latent HSV-1 infections form in neuronal cells of the peripheral nervous system. When a latent infection is reactivated (by stress of many kinds), HSV-1 proteins are synthesized and new infectious virus particles are formed. These virus particles migrate along the neuronal axons to the epithelial cells of the skin. Viral growth in the skin, or other mucous membranes where nerves are found, causes cell damage and an immune reaction that results in a painful sore. Although the latency-to-reactivation process is not fully understood, it is known to involve stress, such as physical damage, ultraviolet light, hormones, or even fever.
Fraser is currently testing whether HSV-2, a relative of HSV-1 that causes genital herpes, also encodes an miRNA molecule in its LAT gene. “MiRNA may be a more general mechanism that latent viruses use to remain alive in the host cell,” suggests Fraser.

Present treatments of HSV-1 rely on acyclovir-based drugs that target the viral polymerase and inhibit viral DNA replication during the acute infection. However, they do not target the latent infection, and thus cold sores return throughout the lifetime of the infected individual. Finding an miRNA that interacts with the cellular TGF-b pathway during latency offers the first target against the latent infection and offers a profoundly different approach to treatment, concludes Fraser.

The study co-authors are Ananya Gupta, Jarred J. Garner, Praveen Sethupathy, and Artemis G. Hatzigeorgiou, all from Penn. The study was funded in part by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells." ScienceDaily. ScienceDaily, 13 June 2006. <www.sciencedaily.com/releases/2006/06/060612184600.htm>.
University of Pennsylvania School of Medicine. (2006, June 13). Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/06/060612184600.htm
University of Pennsylvania School of Medicine. "Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells." ScienceDaily. www.sciencedaily.com/releases/2006/06/060612184600.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins