Featured Research

from universities, journals, and other organizations

Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells

Date:
June 13, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers at the University of Pennsylvania School of Medicine have discovered part of the reason why cold sores, caused by a herpes virus, come back again and again. The new study points to a small RNA molecule, called a microRNA as the culprit that keeps the latent virus-infected cell alive. These findings could one day lead to a new way to fight the virus and offers the first target for intervention in the latent infection.

Neurons (large round cells) latently infected with herpes simplex virus-1. The latency-associated transcript (LAT) probe is the black area within certain cells. LAT microRNA works through a process called RNA interference to prevent normal cell death or apoptosis, so that latent viral infection is maintained for the lifetime of the individual because the infected cell does not die.
Credit: Image Nigel W. Fraser, PhD, University of Pennsylvania School of Medicine

Researchers at the University of Pennsylvania School of Medicine have discovered part of the reason why cold sores, caused by a herpes virus, come back again and again. The new study, published online last month in Nature, points to a small RNA molecule, called a microRNA (miRNA) as the culprit that keeps the latent virus-infected cell alive. These findings could one day lead to a new way to fight the virus and offers the first target for intervention in the latent infection.

A research team led by Nigel W. Fraser, PhD, Professor of Microbiology, has found that herpes simplex virus-1 (HSV-1), the virus that causes cold sores and ocular keratitis, produces an miRNA molecule. This miRNA is encoded by the Latency-Associated Transcript gene (LAT) in the viral genome and works through a process called RNA interference to prevent normal cell death or apoptosis. Thus, the latent viral infection is maintained for the lifetime of the individual because the latently infected cell does not die."

“Although miRNAs encoded by cellular genes are known to be an important mechanism for controlling gene expression, this is one of the first miRNA found to be encoded by a viral genome,” says Fraser. “Our study helps show how HSV-1 can maintain a latent infection for the lifetime of an infected individual.”

The LAT gene was discovered by Fraser and colleagues in 1984, but a protein product from this gene has never been found. This caused Fraser and his research team to hypothesize that LAT may work through an miRNA molecule, which is a small piece of the LAT gene. It interferes with the translation of two cell proteins that are required for cell death: TGF-b and SMAD-3. The LAT miRNA binds to specific sequences of messenger RNA from these two genes and causes them to be degraded. Thus, the amount of TGF-b and SMAD-3 protein is reduced in the cell and apoptosis is prevented. Because the latent virus is not producing any viral proteins the immune system of the infected individual cannot detect the infected cell.

Latent HSV-1 infections form in neuronal cells of the peripheral nervous system. When a latent infection is reactivated (by stress of many kinds), HSV-1 proteins are synthesized and new infectious virus particles are formed. These virus particles migrate along the neuronal axons to the epithelial cells of the skin. Viral growth in the skin, or other mucous membranes where nerves are found, causes cell damage and an immune reaction that results in a painful sore. Although the latency-to-reactivation process is not fully understood, it is known to involve stress, such as physical damage, ultraviolet light, hormones, or even fever.
Fraser is currently testing whether HSV-2, a relative of HSV-1 that causes genital herpes, also encodes an miRNA molecule in its LAT gene. “MiRNA may be a more general mechanism that latent viruses use to remain alive in the host cell,” suggests Fraser.

Present treatments of HSV-1 rely on acyclovir-based drugs that target the viral polymerase and inhibit viral DNA replication during the acute infection. However, they do not target the latent infection, and thus cold sores return throughout the lifetime of the infected individual. Finding an miRNA that interacts with the cellular TGF-b pathway during latency offers the first target against the latent infection and offers a profoundly different approach to treatment, concludes Fraser.

The study co-authors are Ananya Gupta, Jarred J. Garner, Praveen Sethupathy, and Artemis G. Hatzigeorgiou, all from Penn. The study was funded in part by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells." ScienceDaily. ScienceDaily, 13 June 2006. <www.sciencedaily.com/releases/2006/06/060612184600.htm>.
University of Pennsylvania School of Medicine. (2006, June 13). Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2006/06/060612184600.htm
University of Pennsylvania School of Medicine. "Infected for life: How the Herpes Simplex Virus Uses MicroRNA to Hide Out in Cells." ScienceDaily. www.sciencedaily.com/releases/2006/06/060612184600.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins