Featured Research

from universities, journals, and other organizations

Oscillating Pattern In Nanoparticle Crystallisation

Date:
July 4, 2006
Source:
Max-Planck-Gesellschaft
Summary:
In order to survive, biological systems need to form patterns and organise themselves. Scientists at the Max Planck Institute for Colloids and Interfaces in Potsdam, Germany, have now combined self-organisation with chemical pattern formation. They coupled an oscillating chemical reaction with polymer-controlled crystallisation and self-organisation in barium carbonate. In this way, they proved that oscillating reactions - like the renowned Belousov-Zhabotinsky reaction - can also take place in multi-phase systems.

A typical Belousov-Zhabotinsky pattern of concentric circles, observed in this case in polymer-controlled crystallisation and self-organisation from barium carbonate. The structures are similar to a computer-simulated pattern (smaller circle, upper right). The block copolymer used appears in the picture as a shortened molecule structure.
Credit: Image : Max Planck Institute of Colloids and Interfaces

In order to survive, biological systems need to form patterns and organise themselves. Scientists at the Max Planck Institute for Colloids and Interfaces in Potsdam, Germany, have now combined self-organisation with chemical pattern formation.

Related Articles


They coupled an oscillating chemical reaction with polymer-controlled crystallisation and self-organisation in barium carbonate. In this way, they proved that oscillating reactions - like the renowned Belousov-Zhabotinsky reaction - can also take place in multi-phase systems.

On basis of these results, scientists can better explain chemical reactions which are out of thermodynamic balance, as well as biological pattern formation in nature. Furthermore, these results could lead to the creation of surfaces with new kinds of structures (Angewandte Chemie, June 21, 2006).

Scientists are especially interested in oscillating chemical reactions. These occur when reaction products periodically and repeatedly change. Their behaviour is of importance to many fields of study - including chaos research. That is because these reaction systems are always complex and far away from thermodynamic equilibrium. One particularly well-known example is the "Belousov-Zhabotinsky" reaction. In it, a coloured indicator is used to make the reaction products of a coupled redox reaction visible. They typically take on the pattern of concentric circles, spreading out, for example, across a petri dish.

Mathematically, spatially oscillating reactions can be described as "reaction-diffusion systems". This means that it is not just chemical reactions which influence the amount of material at a certain point in space. Diffusion also plays a role - the exchange of material with the surrounding area. In such simulations, we get the typical concentric circle pattern of a Belousov-Zhabotinsky reaction. In the picture above, it is indicated in red-violet.

Researchers from Potsdam have now proven that these oscillating reactions can also apply to multi-phase systems, and even to the self-organisation processes of nanoparticles. What is central is that in a multi-phase reaction system, it is possible to formulate either an autocatalyic or autoinhibiting reaction step. This leads an oscillating system to be constructed, and ultimately a pattern to be formed.

The researchers used a newly synthesized polymer to create the typical concentric circle pattern, via controlled barium carbonate crystallisation (see image). Such patterns correspond quite well to the calculations in a simulation. The researchers also were able to formulate a complex coupled reaction system including crystallisation, complexation, and precipitation reactions and identify the autocatalytic formation of a complex between barium and the polymer.

Notably, the elongated crystalline structures which made up the circular pattern are themselves created by superstructures of nanoparticles, which are themselves created by self-organisation (see image). In this way, Max Planck researchers have shown for the first time that the Belousov-Zhabotinsky reaction does not just take place in a solution, but also in multi-phase systems, and in nanoparticle self-organisation. This discovery is not only important to research into reactions far away from thermodynamic equilibrium. It can also help explain biological pattern formation. One example of biological self-organisation is mussel shell patterns. They are created via controlled crystallisation, just like the model systems of the researchers in Potsdam used. Interestingly, these patterns also mathematically duplicate reaction-diffusion systems exactly.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Oscillating Pattern In Nanoparticle Crystallisation." ScienceDaily. ScienceDaily, 4 July 2006. <www.sciencedaily.com/releases/2006/06/060630094240.htm>.
Max-Planck-Gesellschaft. (2006, July 4). Oscillating Pattern In Nanoparticle Crystallisation. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2006/06/060630094240.htm
Max-Planck-Gesellschaft. "Oscillating Pattern In Nanoparticle Crystallisation." ScienceDaily. www.sciencedaily.com/releases/2006/06/060630094240.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins