Featured Research

from universities, journals, and other organizations

Nano-Chips To Power Computers, Phones Of The Future

Date:
July 8, 2006
Source:
Glasgow University
Summary:
British scientists are playing a key role in the drive to make electronic gadgets smaller, smarter and even more powerful. Researchers from five universities are designing a new generation of ‘nano-electronic’ circuits (chips) that will power the computers and mobile phones of the future. The circuits may also make possible entirely new forms of electronic device that could benefit a range of sectors, including entertainment, communications and medicine.

British scientists are playing a key role in the drive to make electronic gadgets smaller, smarter and even more powerful. Researchers from five universities are designing a new generation of ‘nano-electronic’ circuits (chips) that will power the computers and mobile phones of the future. The circuits may also make possible entirely new forms of electronic device that could benefit a range of sectors, including entertainment, communications and medicine.

The quest for new circuits has been prompted by the relentless advance of technology, which is now proving to be a real headache for the microelectronics industry. The microscopic transistors which are the cogs and wheels of all electronic devices are becoming even smaller and designers must now devise electronic circuits that are compatible with them.

Teams at the Universities of Edinburgh, Glasgow, Manchester, Southampton and York are striving to create nanoscale circuits, using transistors that are 80,000 times smaller than a hair’s breadth. Because the circuits in today’s ipods and PCs will not work with nano-transistors, this research – which is funded by the Engineering and Physical Sciences Research Council – is vital to prevent the industry from grinding to a halt.

In the next decade, transistors will not only be ten times smaller – they will also behave very differently. Two of todays transistors, identical in shape and size, will behave in more or less the same way. That, however, will not be the case at nanoscale.

The next generation of transistors will, in the jargon of chip design, be ‘unmatched’– despite being apparently identical. They will also be extremely ‘noisy’, adding a strong random signal of their own (known as device noise) to whatever signal they are dealing with.

“The circuits we currently use cannot cope with this form of mismatch and randomness,” says Professor Alan Murray, of the University of Edinburgh. “They will require at least re-design - possibly even complete replacement - with circuits that have not yet been invented. We can’t wait for silicon technology to create viable, production-line nanoscale transistors. It will then be too late to start looking for ways to use them. We must start now.”

This new project will allow circuits to be designed that can cope with, or even make use of, the unavoidable bad behaviour of nanoscale transistors. It will use e-Science – which draws on shared data and massive computing power – to bring together computer simulations of transistors that do not yet exist and simulations of circuits that use them.

Principal investigator, Professor Asen Asenov, of the University of Glasgow, is looking forward to the challenge: “This project brings together leading semiconductor device, circuit and system experts from academia and industry and e-scientists with strong Grid expertise. Only by working in close collaboration, and adequately connected and resourced by e-Science and Grid technology, can we understand and tackle the design complexity of nano-CMOS electronics, securing a competitive advantage for the UK electronics industry.”

Professor Richard Sinnott, of the National e-Science Centre at the University of Glasgow, who will lead the e-Science development activity, is also eagerly anticipating the project: “Through close collaboration with our partners, we expect to revolutionise the way in which the disparate teams involved in electronics design process work. Our Grid efforts will be on four key areas: workflows, security, data management and resource management, each targeted to the real needs of the scientists we are to support.”


Story Source:

The above story is based on materials provided by Glasgow University. Note: Materials may be edited for content and length.


Cite This Page:

Glasgow University. "Nano-Chips To Power Computers, Phones Of The Future." ScienceDaily. ScienceDaily, 8 July 2006. <www.sciencedaily.com/releases/2006/07/060708082927.htm>.
Glasgow University. (2006, July 8). Nano-Chips To Power Computers, Phones Of The Future. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2006/07/060708082927.htm
Glasgow University. "Nano-Chips To Power Computers, Phones Of The Future." ScienceDaily. www.sciencedaily.com/releases/2006/07/060708082927.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins