Featured Research

from universities, journals, and other organizations

3-D Model Reveals Secrets Of Metastasis

Date:
July 12, 2006
Source:
Whitehead Institute for Biomedical Research
Summary:
A cancer cell breaks away from a primary tumor and settles in a new location, where it once again divides. Pharmaceutical companies typically use simplistic two-dimensional assays for this process, which is known as metastasis, to evaluate anti-cancer therapeutics. In these assays, cells crawl across the surface of a matrix, traveling in a single plane. But a new study indicates that this approach misses some crucial phenomena.

Researchers tracked the movement of human prostate tumor cells, such as those below, in a 3D matrix. The right column shows software (Imaris) rendering of the cells, which changed shape as scientists altered their environment and increased the concentration of the anti β1 mAB 4B4 surface protein.
Credit: Image s by Muhammad Zaman

A cancer cell breaks away from a primary tumor and settles in a new location, where it once again divides. Pharmaceutical companies typically use simplistic two-dimensional assays for this process, which is known as metastasis, to evaluate anti-cancer therapeutics. In these assays, cells crawl across the surface of a matrix, traveling in a single plane. But a new study indicates that this approach misses some crucial phenomena.

Related Articles


Working in the labs of Whitehead Member Paul Matsudaira and MIT professor Douglas Lauffenburger, postdoctoral researcher Muhammad Zaman discovered that cells move quite differently in three dimensions. His study, which focused on human prostate tumor cells, appeared this week in the online early edition of Proceedings of the National Academy of Sciences.

“Our findings help explain why two-dimensional assays for metastasis-inhibiting drugs do not effectively predict their effects in tissue,” says Douglas Lauffenburger, who is director of MIT’s Biological Engineering Division.

“Two-dimensional assays ignore the obstacles that cells face in their natural contexts,” explains Zaman, who recently became an assistant professor at the University of Texas at Austin. “In 3D, cells move through a thick jungle of fibers, or ‘vines’, that hinder forward progress.”

Cells must either squeeze through or chop up these putative vines to get anywhere. As a result, they move slower in three dimensions.

In an interesting twist, all cells need at least some vines to move, as they latch onto the “branches” with claw-like proteins called integrins and pull themselves forward. When Zaman disabled some of these claws, in a manner analogous to certain anti-cancer drugs, the cells moving across the top of the jungle canopy (in two dimensions) needed a greater number of vines to keep up their pace, while cells plowing through the jungle instead needed vines chopped to maintain the same speed. The complexity of this situation is further increased in that the cells become dramatically sensitive to the stiffness of the vines when the integrins are disabled and consequently tend to squeeze through the vines rather than pushing them aside.

“Our findings help explain why two-dimensional assays for metastasis-inhibiting drugs do not effectively predict their effects in tissue,” says Lauffenburger, who is director of MIT’s Biological Engineering Division. He believes pharmaceutical companies will eventually use three-dimensional assays, accompanied by appropriate computational models such as that also recently published by Zaman (in Biophysical Journal in 2005), to determine how drugs affect metastasis.

But technology must improve before more complicated 3D studies are attempted. For his 3D work Zaman worked with one sample at a time, using a special confocal microscope at the Whitehead-MIT BioImaging Center. The microscope divided each specimen into virtual slices, generating a new stack of images every 15 minutes.

“It took me about a year to get enough data because the microscope wasn’t designed for high-throughput experiments,” he says. Fortunately, the BioImaging Center has one of the most powerful sets of computers at MIT and the imaging processing and analysis went quite quickly.

“Muhammad was successful for two reasons,” says Matsudaira. “His computational model predicted what would happen in virtual experiments and then he was able to go straight to test the predictions with these complicated 3D experiments. As a result, the sophisticated models of cell movement enhance our understanding of key biological processes, including metastasis.”

The research was funded by the National Institutes of Health, the National Science Foundation and the Sokol Foundation for Cancer Research.


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute for Biomedical Research. "3-D Model Reveals Secrets Of Metastasis." ScienceDaily. ScienceDaily, 12 July 2006. <www.sciencedaily.com/releases/2006/07/060712073926.htm>.
Whitehead Institute for Biomedical Research. (2006, July 12). 3-D Model Reveals Secrets Of Metastasis. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2006/07/060712073926.htm
Whitehead Institute for Biomedical Research. "3-D Model Reveals Secrets Of Metastasis." ScienceDaily. www.sciencedaily.com/releases/2006/07/060712073926.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins