Featured Research

from universities, journals, and other organizations

Researchers Transform Stem Cells Found In Human Fat Into Smooth Muscle Cells

Date:
July 25, 2006
Source:
University of California - Los Angeles
Summary:
UCLA researchers have transformed adult stem cells taken from human adipose -- or fat tissue -- into smooth muscle cells, which help the normal function of a multitude of organs like the intestine, bladder and arteries. The research may help lead to use of fat stem cells for smooth muscle tissue engineering and repair.

Researchers from the David Geffen School of Medicine and the Henry Samueli School of Engineering and Applied Science at UCLA today announced they have transformed adult stem cells taken from human adipose -- or fat tissue -- into smooth muscle cells, which help the normal function of a multitude of organs like the intestine, bladder and arteries. The study may help lead to the use of fat stem cells for smooth muscle tissue engineering and repair.

Reported in the July 24 online edition of the Proceedings of the National Academy of Sciences, the study is one of the first to show that stem cells derived from adipose tissue can be changed to acquire the physical and biochemical characteristics as well as the functionality of smooth muscle cells.

Smooth muscle cells are found within the human body in the walls of hollow organs like blood vessels, bladder, and intestines and contract and expand to help transport blood, urine, and waste through the body's systems.

"Fat tissue may prove a reliable source of smooth muscle cells that we can use to regenerate and repair damaged organs," said Dr. Larissa V. Rodriguez, principal investigator and assistant professor, Department of Urology, David Geffen School of Medicine at UCLA.

Rodriguez and her team first cultured the adipose-derived stem cells in a growth factor cocktail that encouraged the cells to transform into smooth muscle cells. Researchers observed the genetic expression and development of proteins, which are specific to this type of cell. So it looked like a smooth muscle cell, but would it act like one?

The next step required testing functionality to see if the cells would expand and contract like smooth muscle tissue. Rodriguez turned to associate professor of bioengineering Dr. Benjamin Wu at the UCLA Henry Samueli School of Engineering and Applied Science for help.

Wu's team developed a special device to evaluate the cells' ability to contract by tracking movement of microbeads dispersed in a collagen gel embedded with the cells. Researchers added different pharmacologic agents known to cause contraction or relaxation in smooth muscle.

"We found that the cells did indeed function just like smooth muscle," said Wu. "The new device allowed us to evaluate drug-induced changes in the physical properties of smooth muscle at the cell level -- previously we've needed tissue samples to observe this phenomena."

To make sure they could reproduce the smooth muscle cells and to confirm the transformation, Rodriguez and her team cloned one of the primitive stem cells from the adipose tissue and repeated the experiments on a cloned population of cells with similar results.

"We wanted to make sure it wasn't an isolated case or particular conditions in the cell cultures that allowed us to create or select out already existing smooth muscle cells," said Rodriguez, also a member of the UCLA Stem Cell Institute. "We are surprised and pleased with the results and are excited about future applications."

Rodriguez notes the many advantages of using a patient's own fat stem cells for organ re-growth and tissue regeneration, including no need for anti-rejection medications. In patients with a diseased or absent organ, who cannot use their own organ tissue for regeneration, adipose stem cells offer an alternative.

Smooth muscle cells have also been produced from stem cells found in the brain and bone marrow, but acquiring stem cells from adipose tissue is much easier and most patients have adipose tissue readily available, according to Rodriguez.

The next step, she adds, involves identifying and developing the growth factors that will induce transformation of cells more quickly. She is also starting to use smooth muscle cells for tissue engineering in the urinary tract, including the urethra.

The study was funded by the National Institute of Child Health and Human Development Building Interdisciplinary Research Careers in Women's Health, the American Geriatrics Society Jahnigen Career Development Scholars Award and the National Institute of Diabetes and Digestive and Kidney Diseases.

Other UCLA authors include: Zeni Alfonso and Rong Zhang from the Department of Urology, David Geffen School of Medicine at UCLA; Joanne Leung from the UCLA Department of Bioengineering and Louis J. Ignarro, UCLA Department of Molecular and Medical Pharmacology.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Researchers Transform Stem Cells Found In Human Fat Into Smooth Muscle Cells." ScienceDaily. ScienceDaily, 25 July 2006. <www.sciencedaily.com/releases/2006/07/060725085119.htm>.
University of California - Los Angeles. (2006, July 25). Researchers Transform Stem Cells Found In Human Fat Into Smooth Muscle Cells. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2006/07/060725085119.htm
University of California - Los Angeles. "Researchers Transform Stem Cells Found In Human Fat Into Smooth Muscle Cells." ScienceDaily. www.sciencedaily.com/releases/2006/07/060725085119.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins