Featured Research

from universities, journals, and other organizations

Scientists Develop New, Molecular Approach To Early Cancer Detection

Date:
July 28, 2006
Source:
University of Florida
Summary:
Scientists have pioneered a new approach to detecting cancer cells, one that could eventually allow doctors to discover many malignancies earlier than currently possible.

Scientists have pioneered a new approach to detecting cancer cells, one that could eventually allow doctors to discover many malignancies earlier than currently possible.

Related Articles


The scientists at the University of Florida have successfully tested the technique to find leukemia cells and believe that it opens the door to the first systematic approach to diagnosing cancer at the molecular level. Not only that, but what they describe as a potentially new cancer probe may one day offer a better method of targeting individual cancer cells with drug therapies, reducing side effects from chemotherapy treatments that today affect both healthy and sickly cells.

“We can use this probe to recognize cancer cells,” potentially discovering cancer earlier than often occurs today, said Dihua Shangguan, a UF postdoctoral associate in chemistry and the first author on a paper about the approach that appears today in the online edition of the Proceedings of the National Academy of Sciences.

Contrary to popular perception, pathologists today diagnose the vast majority of cancers based on the shape or other characteristics of tumor tissue or diseased cells, said Ying Li, one of nine UF faculty members and graduate student co-authors of the paper. That’s a problem because it often means that cancers may already be advanced when detected.

“Normally, definitive diagnosis of cancer requires a visual examination of the tumor, which is an invasive and time-consuming process,” explained Weihong Tan, a UF professor of chemistry and lead author of the paper. “Most importantly, this process is not suitable for early detection, when the cancer is at its most treatable.”
Clinicians can sometimes use antibodies, proteins that recognize and fight bodily intruders, to identify different types of cancer. That’s the case, for example, with the prostate-specific antigen test for prostate cancer. Antibodies are preferable to diagnosis by appearance because they are consistent and accurate, but they are only available for a selected few cancers, Li said.

Tan, a member of the UF Shands Cancer Center and the UF Genetics Institute, said that scientists know that cancer tissue has a unique molecular fingerprint that can distinguish it from healthy tissue. But attempts to target cells via these fingerprints have largely proved futile because there are few molecular tools to recognize the fingerprints. The UF team sought to create these tools in the form of aptamers, or short strands of chemically synthesized DNA. These aptamers exploit the differences on the surface of cells to discern cancerous ones. Key to the approach is it does not require prior knowledge of cancer indicators, Tan said.

“Using the cell-based aptamer selection strategy, we can generate aptamers which can specifically recognize any kind of cells without prior knowledge of molecular changes associated with the disease,” he said.

In experiments, the researchers showed they could successfully design sets of aptamers that would recognize leukemia cells that had been mixed in with normal bone marrow cells. The aptamers also successfully distinguished leukemia T-cells from lymphoma B-cells. Both results indicate that the aptamer method could be used to identify many different types of cancer, researchers said.

Clinicians using such molecular probes should be able to “find cancer in a much earlier stage when the tumors are much smaller,” enabling doctors to begin treatment earlier, Li said.

Richard Zare, a professor and chairman of the Stanford University department of chemistry, said he is “hugely impressed” by the findings reported in the PNAS paper.

“It represents a most clever, new approach to using the differences at the molecular level between any two types of cells for the identification of molecular signatures on the surface of targeted cells,” he said. “I can easily imagine that it will have a most significant impact on developing therapies for disease states.””

The researchers are now testing the approach on lung cancer cells, liver cancer cells and cells infected by viruses, Tang said. The paper’s other authors are Zehui Charles Cao, William Chen, Prabodhika Mallikaratchy, Kwame Sefah and Chaoyong James Yang. The work has been funded with about $1.5 million in grants from the National Institutes of Health and the National Science Foundation and about $450,000 from the office of the UF Vice President for Research.


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University of Florida. "Scientists Develop New, Molecular Approach To Early Cancer Detection." ScienceDaily. ScienceDaily, 28 July 2006. <www.sciencedaily.com/releases/2006/07/060727181719.htm>.
University of Florida. (2006, July 28). Scientists Develop New, Molecular Approach To Early Cancer Detection. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/07/060727181719.htm
University of Florida. "Scientists Develop New, Molecular Approach To Early Cancer Detection." ScienceDaily. www.sciencedaily.com/releases/2006/07/060727181719.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins