Featured Research

from universities, journals, and other organizations

Human Embryonic Stem Cells Display A Unique Pattern Of Chemical Modification To DNA

Date:
August 14, 2006
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists have found that the DNA of human embryonic stem cells is chemically modified in a characteristic, predictable pattern. This pattern distinguishes human embryonic stem cells from normal adult cells and cell lines, including cancer cells. The study, which appears online today in Genome Research, should help researchers understand how epigenetic factors contribute to self-renewal and developmental pluripotence, unique characteristics of human embryonic stem cells that may one day allow them to be used for therapeutic cloning.

Scientists from the Burnham Institute for Medical Research (BIMR) and Illumina Inc., in collaboration with stem cell researchers around the world, have found that the DNA of human embryonic stem cells is chemically modified in a characteristic, predictable pattern. This pattern distinguishes human embryonic stem cells from normal adult cells and cell lines, including cancer cells. The study, which appears online today in Genome Research, should help researchers understand how epigenetic factors contribute to self-renewal and developmental pluripotence, unique characteristics of human embryonic stem cells that may one day allow them to be used to replace diseased or damaged cells with healthy ones in a process called therapeutic cloning.

Embryonic stem cells are derived from embryos that are undergoing a period of intense cellular activity, including the chemical addition of methyl groups to specific DNA sequences in a process known as DNA methylation. The methylation and demethylation of particular DNA sequences in the genome are known to have profound effects on cellular behavior and differentiation. For example, DNA methylation is one of the critical epigenetic events leading to the inactivation of one X chromosome in female cells. Failure to establish a normal pattern of DNA methylation during embryogenesis can cause immunological deficiencies, mental retardation and other abnormalities such as Rett, Prader-Willi, Angelman and Beckwith-Wiedemann syndromes.

Until recently, DNA methylation could only be studied one gene at a time. But a new microarray-based technique developed at Illumina enabled the scientists conducting this new study to simultaneously examine hundreds of potential methylation sites, thereby revealing global patterns. "Analyzing the DNA methylation pattern of hundreds of genes at a time opens a new window for epigenetic research," says Dr. Jian-Bing Fan, director of molecular biology at Illumina. "Exciting insights into development, aging, and cancer should come quickly from understanding global patterns of DNA methylation."

To examine global DNA methylation patterns in human embryonic stem cells, the researchers analyzed 14 human embryonic stem cell lines from diverse ethnic origins, derived in several different labs, and maintained for various times in culture. They tested over 1500 potential methylation sites in the DNA of these cells and in other cell types and found that the embryonic stem cells shared essentially identical methylation patterns in a large number of gene regions. Furthermore, these methylation patterns were distinct from those in adult stem cells, differentiated cells, and cancer cells.

"Our results suggest that therapeutic cloning of patient-specific human embryonic stem cells will be an enormous challenge, as nuclei from adult cells will have to be epigenetically reprogrammed to reflect the specific DNA methylation signature of normal human embryonic stem cells," explains Dr. Jeanne Loring, co-director of the stem cell center at BIMR. "This reinforces the need for basic research directed at understanding the fundamental biology of human embryonic stem cells before therapeutic uses can be considered."

Genome Research (www.genome.org) is an international, continuously published, peer-reviewed journal published by Cold Spring Harbor Laboratory Press. Launched in 1995, it is one of the five most highly cited primary research journals in genetics and genomics.

Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Human Embryonic Stem Cells Display A Unique Pattern Of Chemical Modification To DNA." ScienceDaily. ScienceDaily, 14 August 2006. <www.sciencedaily.com/releases/2006/08/060814122430.htm>.
Cold Spring Harbor Laboratory. (2006, August 14). Human Embryonic Stem Cells Display A Unique Pattern Of Chemical Modification To DNA. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2006/08/060814122430.htm
Cold Spring Harbor Laboratory. "Human Embryonic Stem Cells Display A Unique Pattern Of Chemical Modification To DNA." ScienceDaily. www.sciencedaily.com/releases/2006/08/060814122430.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) — Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) — The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) — A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) — All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins