Featured Research

from universities, journals, and other organizations

Mind-body Connection: How Central Nervous System Regulates Arthritis

Date:
September 7, 2006
Source:
University of California - San Diego
Summary:
In a unique approach to inflammation research, a study by researchers at UCSD School of Medicine shows that, in a model of rheumatoid arthritis, inflammation in the joints can be sensed and modulated by the central nervous system (CNS). The research suggests that the CNS can profoundly influence immune responses, and may even contribute to understanding so-called placebo effects and the role of stress in inflammatory diseases.

In a unique approach to inflammation research, a study by researchers at the University of California, San Diego (UCSD) School of Medicine shows that, in a model of rheumatoid arthritis, inflammation in the joints can be sensed and modulated by the central nervous system (CNS). The research suggests that the CNS can profoundly influence immune responses, and may even contribute to understanding so-called placebo effects and the role of stress in inflammatory diseases.

The central nervous system is not just a passive responder to the outside world, but is fully able to control many previously unanticipated physiologic responses, including immunity and inflammation," said Gary S. Firestein, M.D., Professor of Medicine, Chief of the Division of Rheumatology, Allergy and Immunology, and Director of UCSD's Clinical Investigation Institute, who led the study.

The UCSD research team found that blocking key signaling enzymes in the CNS of rats resulted in decreased joint inflammation and destruction. Their findings will be published in the September edition of the journal Public Library of Science (PLoS) Medicine.

"This is an entirely new approach," Firestein said. ԤInstead of targeting enzymes at the actual site of disease, our hypothesis is that the central nervous system is a controlling influence for the body and can regulate peripheral inflammation and immune responses."

For many years, researchers have explored developing therapeutic targets by blocking the function of a signaling enzyme called p38 MAP kinase throughout the body. This enzyme regulates cytokines proteins released in response to stress that regulate inflammation in patients with arthritis. p38 is known to regulate production of a one particular cytokine called TNFƒΡ, and inhibitors of this cytokine are effective therapies for rheumatoid arthritis. Typically, researchers attempt to inhibit proteins in the main tissues affected by the disease, such as the joints in arthritis or the colon in inflammatory bowel disease.

UCSD's multidisciplinary research team including Linda Sorkin, Ph.D., Department of Anesthesiology and David L. Boyle, Department of Medicine thought that the CNS might play a more important role in controlling the symptoms of rheumatoid arthritis than previously believed. To test their hypothesis, the researchers studied the p38 MAP kinase signaling in rat spinal cords.

The scientists used a novel drug delivery system to administer miniscule amounts of a compound that blocks these signals only in the CNS and then determined the influence of the treatment on peripheral arthritis.

We observed that the p38 signal is turned on, or activated, in the central nervous system during peripheral inflammation," Firestein said. "If we blocked this enzyme exclusively in a highly restricted site but not throughout in the body, inflammation in the joints was significantly suppressed."

Not only were clinical signs of arthritis diminished in those rats where p38 inhibitors were administered into the spinal fluid, but damage to the joint was also markedly decreased. The same dose of the inhibitors administered systemically had no effect.

The group also explored whether TNFƒΡ might also play a role in this observation. Using a TNF-inhibitor that is approved for use in rheumatoid arthritis and is usually given throughout the body, the scientists showed that delivering small amounts of this agent into the central nervous system also suppressed arthritis and joint destruction in the rats. They proposed that inflammation in the joints increases TNF production in the central nervous system, which, in turn, activates spinal p38. By blocking this pathway only in the spinal cord, they observed the same benefit that was normally achieved by treating the entire body with much higher doses.

The novel mechanism could have therapeutic implications related to the design and delivery of anti-inflammatory drugs, and may be related to the way pain signals are perceived by the brain. The study also shows that the interactions between the CNS and the body are highly complex.

Additional contributors include Deepa Hammaker, Sanna Rosengren and Salvatore Albani, UCSD Division of Rheumatology, Allergy and Immunity; and Toni L. Jones and Camille I. Svensson, UCSD Department of Anesthesiology. The research was supported by grants from the Arthritis Foundation and the National Institute of Arthritis and Musculoskeletal and Skin Disease.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Mind-body Connection: How Central Nervous System Regulates Arthritis." ScienceDaily. ScienceDaily, 7 September 2006. <www.sciencedaily.com/releases/2006/09/060905084830.htm>.
University of California - San Diego. (2006, September 7). Mind-body Connection: How Central Nervous System Regulates Arthritis. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2006/09/060905084830.htm
University of California - San Diego. "Mind-body Connection: How Central Nervous System Regulates Arthritis." ScienceDaily. www.sciencedaily.com/releases/2006/09/060905084830.htm (accessed September 14, 2014).

Share This



More Health & Medicine News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) — The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) — Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) — The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins