Featured Research

from universities, journals, and other organizations

Acoustic Data May Reveal Hidden Gas, Oil Supplies

Date:
September 9, 2006
Source:
Massachusetts Institute of Technology
Summary:
Just as doctors use ultrasound to image unborn babies, MIT researchers listen to the echoing language of rocks to map what's going on tens of thousands of feet below the Earth's surface. Now the scientists will use their skills to find pockets of natural gas and oil contained in fractured porous rocks in a Wyoming oil field. If the method proves effective, it could be used at oil and gas fields across the country.

MIT researchers employed time-lapse vertical seismic profiling (VSP) to help identify natural gas pockets. The left panel shows seismic maps of underground faults and wells that may contain hard-to-get-at reservoirs of oil and gas. The middle and right panels show more detailed data gathered through VSP.
Credit: Image courtesy of Daniel Burns, MIT

Just as doctors use ultrasound to image internal organs and unborn babies, MIT Earth Resources Laboratory researchers listen to the echoing language of rocks to map what's going on tens of thousands of feet below the Earth's surface.

Related Articles


With the help of a new $580,000 US Department of Energy (DOE) grant, the earth scientists will use their skills at interpreting underground sound to seek out "sweet spots"--pockets of natural gas and oil contained in fractured porous rocks--in a Wyoming oil field. If the method proves effective at determining where to drill wells, it could eventually be used at oil and gas fields across the country.

A major domestic source of natural gas is low-permeability or "tight" gas formations. Oil and gas come from organic materials that have been cooked for eons under the pressure and high heat of the Earth's crust. Some underground reservoirs contain large volumes of oil and gas that flow easily through permeable rocks, but sometimes the fluids are trapped in rocks with small, difficult-to-access pores, forming separate scattered pockets. Until recently, there was no technology available to get at tight gas.

Tight gas is now the largest of three unconventional gas resources, which also include coal beds and shale. Production of unconventional gas in the United States represented around 40 percent of the nation's total gas output in 2004, according to the DOE, but could grow to 50 percent by 2030 if advanced technologies are developed and implemented.

One such advanced technology is the brainchild of Mark E. Willis and Daniel R. Burns, research scientists in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and M. Nafi Toksoz, professor of EAPS. Their method involves combining data from two established, yet previously unrelated, means of seeking out hidden oil and gas reserves.

To free up the hydrocarbons scattered in small pockets from one to three miles below ground, oil companies use a process called hydraulic fracturing, or hydrofrac, which forces water into the bedrock through deep wells to create fractures and increase the size and extent of existing fractures. The fractures open up avenues for the oil and gas to flow to wells.

To monitor the effectiveness of fracturing and to detect natural fractures that may be sweet spots of natural gas, engineers gather acoustic data from the surface and from deep within wells. "Surface seismic methods are like medical ultrasound. They give us images of the subsurface geology," Burns said. Three-dimensional seismic surveys involve creating vibrations on the surface and monitoring the resulting underground echoes. "When the echoes change, fractures are there," Willis said.

A method called time-lapse vertical seismic profiling (VSP) tends to be more accurate because it collects acoustic data directly underground through bore holes. "Putting the receivers down into a well is like making images with sensors inside the body in the medical world," Burns said. "The result is the ability to see finer details and avoid all the clutter that comes from sending sound waves through the skin and muscle tissue to get at the thing we are most interested in seeing."

Time-lapse VSP is expensive and not routinely used in oil and gas exploration. The EAPS research team, working with time-lapse VSP data collected by industry partner EnCana Corp., came up with unique ways to look at the data together with microseismic data from the tiny earthquakes that are produced when the rock is fractured. "If we record and locate these events just as the US Geological Survey does with large earthquakes around the world, we get an idea of where the hydrofrac is located. Then we look at the time-lapse VSP data at those spots and try to get a more detailed image of the fracture," Burns said.

The MIT team hopes to show that this new approach is the most effective way to find sweet spots. "If we can demonstrate the value of time-lapse VSP, this tool could be used in a wider fashion across the United States on many fields," Willis said.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Acoustic Data May Reveal Hidden Gas, Oil Supplies." ScienceDaily. ScienceDaily, 9 September 2006. <www.sciencedaily.com/releases/2006/09/060908170923.htm>.
Massachusetts Institute of Technology. (2006, September 9). Acoustic Data May Reveal Hidden Gas, Oil Supplies. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/09/060908170923.htm
Massachusetts Institute of Technology. "Acoustic Data May Reveal Hidden Gas, Oil Supplies." ScienceDaily. www.sciencedaily.com/releases/2006/09/060908170923.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins