Featured Research

from universities, journals, and other organizations

Small, Low-noise Oscillator May Help In Surveillance

Date:
September 16, 2006
Source:
National Institute of Standards and Technology
Summary:
A new design for a microwave oscillator that is smaller, simpler and produces clearer signals at a single frequency than comparable devices has been invented at NIST. Application areas could include homeland security, telecommunications and perhaps even consumer devices.

A new design for a microwave oscillator that is smaller, simpler, and produces clearer signals at a single frequency than comparable devices has been invented at the National Institute of Standards and Technology (NIST). Applications could include homeland security (e.g., surveillance of radio traffic for anomalous signals, or high-resolution digital imaging radar on unmanned aircraft), telecommunications (e.g., maintaining separation between frequencies in high-bandwidth networks), and perhaps even consumer devices (e.g., satellite television downlinks).

Related Articles


A patent was issued recently* for the NIST oscillator, which is about the size of a roll of 35 mm camera film. NIST researchers have built five prototypes on test fixtures, which offer several-orders-of-magnitude reductions in various types of self-generated signal interference, or noise, compared to typical commercial oscillators, resulting in improved frequency stability, according to David Howe, one of the inventors. In addition, the simple design reduces costs and improves reliability, while consuming less power than other oscillators of comparable signal purity. The small size could be an advantage on some surveillance platforms.

Microwave oscillators are used as reference or clock signals in many high-precision technologies. Through control of temperature and other variables, the oscillators produce a desired signal at one narrowly defined frequency while suppressing random, electronically induced "noise" generated by components. In the best microwave oscillators, the signal typically is amplified inside a metal cavity containing a solid insulating material that internally sustains microwaves and radio waves with minimal loss, especially at cryogenic temperatures, an expensive and complex design. By contrast, the NIST oscillator uses an ultra-stiff ceramic manifold that supports a single frequency with either a vacuum or air as the insulating medium.

The NIST device operates at high signal power (many watts) without the noise penalty found in the conventional design just described. The technique maintains such a stable frequency that it can overcome or compensate for self-generated noise produced by components such as amplifiers that sustain oscillation. NIST researchers continue to work on improvements, hoping to make the technology more tolerant of vibrations such as those from aircraft, field radars, and even sub-audible vibrations in buildings.

*United States Patent US007075378B2. High spectral purity microwave oscillator using air-dielectric cavity, D.A. Howe, A.S. Gupta, C. Nelson, F.L. Walls, July 11, 2006.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Small, Low-noise Oscillator May Help In Surveillance." ScienceDaily. ScienceDaily, 16 September 2006. <www.sciencedaily.com/releases/2006/09/060915202149.htm>.
National Institute of Standards and Technology. (2006, September 16). Small, Low-noise Oscillator May Help In Surveillance. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2006/09/060915202149.htm
National Institute of Standards and Technology. "Small, Low-noise Oscillator May Help In Surveillance." ScienceDaily. www.sciencedaily.com/releases/2006/09/060915202149.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins