Featured Research

from universities, journals, and other organizations

Small, Low-noise Oscillator May Help In Surveillance

Date:
September 16, 2006
Source:
National Institute of Standards and Technology
Summary:
A new design for a microwave oscillator that is smaller, simpler and produces clearer signals at a single frequency than comparable devices has been invented at NIST. Application areas could include homeland security, telecommunications and perhaps even consumer devices.

A new design for a microwave oscillator that is smaller, simpler, and produces clearer signals at a single frequency than comparable devices has been invented at the National Institute of Standards and Technology (NIST). Applications could include homeland security (e.g., surveillance of radio traffic for anomalous signals, or high-resolution digital imaging radar on unmanned aircraft), telecommunications (e.g., maintaining separation between frequencies in high-bandwidth networks), and perhaps even consumer devices (e.g., satellite television downlinks).

A patent was issued recently* for the NIST oscillator, which is about the size of a roll of 35 mm camera film. NIST researchers have built five prototypes on test fixtures, which offer several-orders-of-magnitude reductions in various types of self-generated signal interference, or noise, compared to typical commercial oscillators, resulting in improved frequency stability, according to David Howe, one of the inventors. In addition, the simple design reduces costs and improves reliability, while consuming less power than other oscillators of comparable signal purity. The small size could be an advantage on some surveillance platforms.

Microwave oscillators are used as reference or clock signals in many high-precision technologies. Through control of temperature and other variables, the oscillators produce a desired signal at one narrowly defined frequency while suppressing random, electronically induced "noise" generated by components. In the best microwave oscillators, the signal typically is amplified inside a metal cavity containing a solid insulating material that internally sustains microwaves and radio waves with minimal loss, especially at cryogenic temperatures, an expensive and complex design. By contrast, the NIST oscillator uses an ultra-stiff ceramic manifold that supports a single frequency with either a vacuum or air as the insulating medium.

The NIST device operates at high signal power (many watts) without the noise penalty found in the conventional design just described. The technique maintains such a stable frequency that it can overcome or compensate for self-generated noise produced by components such as amplifiers that sustain oscillation. NIST researchers continue to work on improvements, hoping to make the technology more tolerant of vibrations such as those from aircraft, field radars, and even sub-audible vibrations in buildings.

*United States Patent US007075378B2. High spectral purity microwave oscillator using air-dielectric cavity, D.A. Howe, A.S. Gupta, C. Nelson, F.L. Walls, July 11, 2006.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Small, Low-noise Oscillator May Help In Surveillance." ScienceDaily. ScienceDaily, 16 September 2006. <www.sciencedaily.com/releases/2006/09/060915202149.htm>.
National Institute of Standards and Technology. (2006, September 16). Small, Low-noise Oscillator May Help In Surveillance. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2006/09/060915202149.htm
National Institute of Standards and Technology. "Small, Low-noise Oscillator May Help In Surveillance." ScienceDaily. www.sciencedaily.com/releases/2006/09/060915202149.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins