Featured Research

from universities, journals, and other organizations

Switchable Lotus Effect: Material Becomes Super Water-repellent With The Flick Of A Light

Date:
September 17, 2006
Source:
John Wiley & Sons, Inc.
Summary:
Japanese Researchers led by Kingo Uchida and Shinichiro Nakamura have synthesized a compound in the diarylethene family whose surface becomes super-water-repellent on command.

Lotus blossoms are beautiful, and always immaculately clean. Water drops bead up and roll off of their water-repellent surface, washing away every speck of dust. This type of self-cleaning surface would be very useful to us as well: no more carwash, no soiled facades on houses—the potential uses are endless. To date, however, technology has not been able to duplicate nature’s success. Researchers led by Kingo Uchida and Shinichiro Nakamura have now synthesized a compound in the diarylethene family whose surface becomes super-water-repellent on command.

Related Articles


The secret behind the lotus effect is the special microstructure, consisting of tiny nubs, on the surface of the lotus plant’s leaves. These micronodules provide no surface on which water drops can collect, so the leaf does not get coated with water. The drops contract into beads and roll off the surface, sweeping away any particles of dirt they encounter on the way. On normal smooth surfaces, water drops coat the surface and assume a hemispherical shape. Instead of rolling, they then glide over the surface, which does not allow them to remove dirt particles.

The Japanese researchers have now synthesized a special substance, a member of the group of compounds known as diarylethenes, and produced a microcrystalline film of this substance on a support. Electron microscopy images show that the surface of this film is initially smooth. When the diarylethene film is irradiated with UV light, the previously colorless surface turns blue—and is no longer smooth. Instead it is covered with a fine down of tiny fibers that have a diameter of about 1 m. This down has a similar effect to the micronodules on the lotus blossom, resulting in a super-water-repellent surface. If the surface is irradiated again, this time with visible light, the fibers and color vanish, leaving a colorless, smooth, and wettable surface.

This effect originates from changes in the molecular structure. The diarylethene molecule is made of three five-membered rings hooked together. UV light sets off a rearrangement within the molecule (isomerization). This results in a ring closure, which leads to formation of a fourth ring. The isomer with the closed fourth ring crystallizes in the form of needles, which grow out of the crystals of the isomer with the open ring as soon as a certain concentration is reached. Light in the visible range of the spectrum sets off the reverse reaction: the ring re-opens, and the needles disappear.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Switchable Lotus Effect: Material Becomes Super Water-repellent With The Flick Of A Light." ScienceDaily. ScienceDaily, 17 September 2006. <www.sciencedaily.com/releases/2006/09/060915204838.htm>.
John Wiley & Sons, Inc.. (2006, September 17). Switchable Lotus Effect: Material Becomes Super Water-repellent With The Flick Of A Light. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2006/09/060915204838.htm
John Wiley & Sons, Inc.. "Switchable Lotus Effect: Material Becomes Super Water-repellent With The Flick Of A Light." ScienceDaily. www.sciencedaily.com/releases/2006/09/060915204838.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Smartphone Giants Unveil Latest Models at Technology Show

Smartphone Giants Unveil Latest Models at Technology Show

AFP (Mar. 2, 2015) Mobile providers have been unveiling their upcoming models at the Mobile World Congress in Barcelona, showing off the latest in smartphone technology. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
The Tech Challenges Facing Automakers

The Tech Challenges Facing Automakers

Reuters - Business Video Online (Mar. 2, 2015) This year&apos;s The International Motor Show is getting underway in Geneva. As Sonia Legg reports its taking place as Europe&apos;s beleaguered car industry finally starts showing signs of picking up. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins