Featured Research

from universities, journals, and other organizations

On Airplanes, Fiber Optics Poised To Reach New Heights

Date:
September 25, 2006
Source:
Optical Society of America
Summary:
In an effort to provide safer and more reliable components for aircraft, researchers have invented an optical on-off switch that can replace electrical wiring on airplanes with fiber optics for controlling elevators, rudders and other flight-critical elements. The research is described by Zhaoxia Xie and Henry F. Taylor of Texas A&M University in the current issue of Optics Letters, a journal of the Optical Society of America.

F-16 aircraft.
Credit: Image courtesy of Andrews Air Force Base

In an effort to provide safer and more reliable components for aircraft, researchers have invented an optical on-off switch that can replace electrical wiring on airplanes with fiber optics for controlling elevators, rudders, and other flight-critical elements.

Fiber-optics technology has already transformed life on the ground by replacing copper wire to transmit voice calls, Internet traffic, and other telecommunications. Now, engineers are preparing an important new fiber-optics application for liftoff, with their prototype switch ready for testing on real-life aircraft. The technology also has potential applications on the nation's highways, as a "weigh-in-motion" sensor for measuring the weight of fast-moving commercial trucks without requiring them to stop on a scale. The research is described by Zhaoxia Xie and Henry F. Taylor of Texas A&M University in the current issue of Optics Letters, a journal of the Optical Society of America.

Xie and Taylor's new optical device is simple, but vital for an aircraft: it's an on-off switch. It senses the press of a button from a pilot. Such switches are usually electrically based and require electrical wiring which could get complex and bulky with the many buttons in cockpits and throughout an aircraft. But a system based on a single optical fiber could potentially sense presses from hundreds of buttons simultaneously by detecting light signals coming from different buttons. The crucial component of the Texas A&M switch is called a fiber Fabry-Perot interferometer (FFPI). It consists of two parallel mirrors. When white light passes through the mirrors, some of it bounces between the mirrors, and some passes through. These light waves combine or "interfere" to produce a pattern. The interference pattern changes if the distance between the mirrors changes.

In the Texas A&M design, a small plank-like object, known as a cantilever, is bonded to the interferometer. The cantilever, in turn, is attached to a switch. Pressing the switch creates a force on the cantilever, which causes it to bend, changing the spacing between the mirrors and thereby altering the interference pattern. The altered interference pattern provides a signal to indicate that the switch has been pressed. This information can be transmitted optically to the desired part of the airplane. A network of other interferometers and lasers filters out fluctuations in temperature and other disturbances so that only the pressing of the button registers as a valid signal.

Using fiber optics to transmit signals has specific advantages for aircraft. A fiber-optics system is lightweight and does not take up much room. It is immune from lightning and electromagnetic interference. It also is a safer alternative for planes as it is not susceptible to causing fires. At least 26 accidents or serious incidents in aircraft since 1983 were caused by fires or other failures related to electrical wiring systems, according to the Federal Aviation Administration.

The fiber-optic approach is intended for both military and commercial aircraft. It could either be incorporated into new designs or retrofitted into existing aircraft. Voice communications equipment in newer aircraft is already fiber-optics based, says lead author Xie. Therefore, integrating other aircraft instrumentation into a single optics package could save weight, space, fuel, and construction costs on future aircraft.

Lockheed Martin has been among the supporters of this research. The next step is to test this system on a real airplane.

According to Xie, the technology also has potential applications for other modes of transportation.

"Due to the sheer value of car and truck traffic on our highways, current weighing systems using slow and cumbersome static scales aren't a viable option. Therefore there's a strong demand for an economic, effective and reliable 'weigh-in-motion' system," comments Xie. In the FFPI weigh-in-motion system, the optical sensors would be bonded in a groove of metal bars to measure the strain induced by the truck wheels passing. This could provide an alternative to cumbersome and time-consuming stops that trucks must currently make in highways, she says.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "On Airplanes, Fiber Optics Poised To Reach New Heights." ScienceDaily. ScienceDaily, 25 September 2006. <www.sciencedaily.com/releases/2006/09/060918164717.htm>.
Optical Society of America. (2006, September 25). On Airplanes, Fiber Optics Poised To Reach New Heights. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/09/060918164717.htm
Optical Society of America. "On Airplanes, Fiber Optics Poised To Reach New Heights." ScienceDaily. www.sciencedaily.com/releases/2006/09/060918164717.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins