Featured Research

from universities, journals, and other organizations

Ceramic Microreactors Developed For On-site Hydrogen Production

Date:
October 3, 2006
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists at the University of Illinois at Urbana-Champaign have designed and built ceramic microreactors for the on-site reforming of hydrocarbon fuels, such as propane, into hydrogen for use in fuel cells and other portable power sources. Applications include power supplies for small appliances and laptop computers, and on-site rechargers for battery packs used by the military.

Paul Kenis, professor of chemical and biomolecular engineering, holds a model of the ceramic microreactor Illinois researchers designed and built for the on-site reforming of hydrocarbon fuels, such as propane, into hydrogen for use in fuel cells and other portable power sources.
Credit: Photo by L. Brian Stauffer

Scientists at the University of Illinois at Urbana-Champaign have designed and built ceramic microreactors for the on-site reforming of hydrocarbon fuels, such as propane, into hydrogen for use in fuel cells and other portable power sources.

Applications include power supplies for small appliances and laptop computers, and on-site rechargers for battery packs used by the military.

"The catalytic reforming of hydrocarbon fuels offers a nice solution to supplying hydrogen to fuel cells while avoiding safety and storage issues related to gaseous hydrogen," said Paul Kenis, a professor of chemical and biomolecular engineering at Illinois and corresponding author of a paper accepted for publication in the journal Lab on a Chip, and posted on its Web site.

In previous work, Kenis and colleagues developed an integrated catalyst structure and placed it inside a stainless steel housing, where it successfully stripped hydrogen from ammonia at temperatures up to 500 degrees Celsius.

In their latest work, the researchers incorporated the catalyst structure within a ceramic housing, which enabled the steam reforming of propane at operating temperatures up to 1,000 degrees Celsius. Using the new ceramic housing, the researchers also demonstrated the successful decomposition of ammonia at temperatures up to 1,000 degrees Celsius. High-temperature operation is essential for peak performance in microreactors, said Kenis, who also is a researcher at the university's Beckman Institute for Advanced Science and Technology. When reforming hydrocarbons such as propane, temperatures above 800 degrees Celsius prevent the formation of soot that can foul the catalyst surface and reduce performance.

"The performance of our integrated, high-temperature microreactors surpasses that of other fuel reformer systems," Kenis said. "Our microreactors are superior in both hydrogen production and in long-term stability." Kenis and his group are now attempting to reform other, higher hydrocarbon fuels, such as gasoline and diesel, which have well-developed distribution networks around the world.

The research team includes Kenis and graduate students Michael Mitchell and Christian. Funding was provided by the U.S. Department of Defense, Army Research Office, National Science Foundation and the U. of I.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Ceramic Microreactors Developed For On-site Hydrogen Production." ScienceDaily. ScienceDaily, 3 October 2006. <www.sciencedaily.com/releases/2006/09/060920082742.htm>.
University of Illinois at Urbana-Champaign. (2006, October 3). Ceramic Microreactors Developed For On-site Hydrogen Production. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2006/09/060920082742.htm
University of Illinois at Urbana-Champaign. "Ceramic Microreactors Developed For On-site Hydrogen Production." ScienceDaily. www.sciencedaily.com/releases/2006/09/060920082742.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins