Featured Research

from universities, journals, and other organizations

Polarized Particles Join Toolbox For Building Unique Structures

Date:
October 17, 2006
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers at the University of Illinois at Urbana-Champaign have created polarized, spherical particles that spontaneously self-assemble into clusters with specific shapes and distributions of electric charge. The polarized particles can be used in the directional self-assembly of intricate shapes and unique structures.

Steve Granick, a professor of materials science and engineering, of chemistry and of physics, above, and Erik Luijten, a professor of mateials science and engineering, have created polarized, spherical particles that spontaneously self-assemble into clusters with specific shapes and distributions of electric charge.
Credit: Image courtesy of University of Illinois at Urbana-Champaign

Researchers at the University of Illinois at Urbana-Champaign have created polarized, spherical particles that spontaneously self-assemble into clusters with specific shapes and distributions of electric charge. The polarized particles can be used in the directional self-assembly of intricate shapes and unique structures.

"The world abounds with particles that have traditionally been treated as geometrically symmetric, chemically isotropic and electrically uniform," said Steve Granick, a professor of materials science and engineering, chemistry and physics. "We have muddied the waters a bit by asking: 'What happens when we build clusters from particles that have an uneven distribution of electric charge?' "

The polarized spheres are called Janus particles; Janus was the Roman god of change, often portrayed with two faces gazing in opposite directions. The spheres offer new opportunities in particle engineering for building particular structures. The clusters may also prove useful as simple systems in which to explore the role of charge interactions in determining how proteins aggregate.

Granick and his collaborators describe their work in a paper accepted for publication in the journal Nano Letters, and posted on its Web site.

To make their Janus particles, the researchers begin with negatively charged beads one micron in diameter. Using electron beam deposition, they coat one hemisphere of the beads with a gold film, which is then made positively charged.

When placed in solution, the particles spontaneously self-assemble into specific geometrical shapes depending on the number of particles. For example, clusters of seven particles resemble a flywheel, which can revolve around a polar axle.

The compact shapes differ fundamentally from the strings and rings formed by magnetic particles, said Granick, who also is a researcher at the Frederick Seitz Materials Research Laboratory and at the Beckman Institute for Advanced Science and Technology.

"The observed shapes are in excellent agreement with computer simulations," said Erik Luijten, a professor of materials science and engineering, and a corresponding author of the paper. "The simulations not only show you the shapes, they also show you how the particles are oriented in the cluster."

Surprisingly, the charge distribution of the initial Janus particles is preserved in the clusters. One half of each cluster tends to be positively charged; the other half negatively charged. This uneven distribution of surface charge could be utilized, perhaps, in the directional self-assembly of particles into more elaborate and intricate shapes.

"Future work could consider particles whose shape is not just spherical, but also rod-like or oblate," Granick said. "This is just the beginning of something that will catch a lot of people's imaginations."

Lead authors of the paper were graduate student Liang Hong and postdoctoral research associate Angelo Cacciuto. The work was funded by the National Science Foundation and the Petroleum Research Fund.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Polarized Particles Join Toolbox For Building Unique Structures." ScienceDaily. ScienceDaily, 17 October 2006. <www.sciencedaily.com/releases/2006/10/061012184258.htm>.
University of Illinois at Urbana-Champaign. (2006, October 17). Polarized Particles Join Toolbox For Building Unique Structures. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2006/10/061012184258.htm
University of Illinois at Urbana-Champaign. "Polarized Particles Join Toolbox For Building Unique Structures." ScienceDaily. www.sciencedaily.com/releases/2006/10/061012184258.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins