Featured Research

from universities, journals, and other organizations

How Can We Make Nanoscale Capacitors Even Smaller?

Date:
October 18, 2006
Source:
University of California - Santa Barbara
Summary:
Researchers at UC Santa Barbara have discovered what limits our ability to reduce the size of capacitors, often the largest components in integrated circuits, down to the nanoscale. They have answered a 45-year-old question: Why is the capacitance in thin--film capacitors so much smaller than expected?

Researchers at UC Santa Barbara have discovered what limits our ability to reduce the size of capacitors, often the largest components in integrated circuits, down to the nanoscale. They have answered a 45-year old question: why is the capacitance in thin--film capacitors so much smaller than expected?

Related Articles


Because there is great interest in increased portability in consumer electronics, researchers are continually searching for ways to reduce the size of electronic devices, but capacitors have proved particularly problematic. Researchers have tried to use high-permittivity materials to achieve more capacitance in a smaller area, but nanoscale devices have yielded lower-than-expected capacitance values. These low values have limited the performance of thin-film capacitors and prevented further device miniaturization.

Nicola Spaldin, a professor in the Materials Department of the College of Engineering, and her collaborator, post-doctoral researcher Massimiliano Stengel, used quantum mechanical calculations to prove that a so-called "dielectric dead layer" at the metal-insulator interface is responsible for the observed capacitance reduction.

Spaldin and Stengel explain, in the October 12 issue of Nature, that the fundamental quantum mechanical properties of the interfaces are the root cause of the problem, and show that metals with good screening properties can be used to improve the properties. "Our results provide practical guidelines for minimizing the deleterious effects of the dielectric dead layer in nanoscale devices," they say.

The research was supported by the Materials Theory program of the Division of Materials Research at the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Barbara. "How Can We Make Nanoscale Capacitors Even Smaller?." ScienceDaily. ScienceDaily, 18 October 2006. <www.sciencedaily.com/releases/2006/10/061012184502.htm>.
University of California - Santa Barbara. (2006, October 18). How Can We Make Nanoscale Capacitors Even Smaller?. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/10/061012184502.htm
University of California - Santa Barbara. "How Can We Make Nanoscale Capacitors Even Smaller?." ScienceDaily. www.sciencedaily.com/releases/2006/10/061012184502.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins